import os import logging import sys # Libs import xarray as xr import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt # Locals import oggm.cfg as cfg from oggm import utils, workflow, tasks from oggm.core import gcm_climate # Initialize OGGM and set up the default run parameters cfg.initialize(logging_level='ERROR') rgi_version = '62' # Local working directory (where OGGM will write its output) WORKING_DIR = os.environ.get('OGGM_WORKDIR', '') if not WORKING_DIR: raise RuntimeError('Need a working dir') utils.mkdir(WORKING_DIR) cfg.PATHS['working_dir'] = WORKING_DIR # ERA5 params cfg.PARAMS['continue_on_error'] = True cfg.PARAMS['prcp_scaling_factor'] = 1.6 cfg.PARAMS['border'] = 160 cfg.PARAMS['hydro_month_nh'] = 1 cfg.PARAMS['hydro_month_sh'] = 1 OUTPUT_DIR = os.environ.get('OGGM_OUTDIR', '') if not OUTPUT_DIR: raise RuntimeError('Need an output dir') utils.mkdir(OUTPUT_DIR) rgi_reg = os.environ.get('OGGM_RGI_REG', '') if rgi_reg not in ['{:02d}'.format(r) for r in range(1, 20)]: raise RuntimeError('Need an RGI Region') # Module logger log = logging.getLogger(__name__) log.workflow('Starting run for RGI reg {}'.format(rgi_reg)) # RGI glaciers rgi_ids = gpd.read_file(utils.get_rgi_region_file(rgi_reg, version=rgi_version)) # For greenland we omit connectivity level 2 if rgi_reg == '05': rgi_ids = rgi_ids.loc[rgi_ids['Connect'] != 2] # Test # rgi_ids = rgi_ids.sample(64) # base_urls = ['https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/ERA5/elev_bands/qc3/pcp1.6/no_match', # 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/ERA5/elev_bands/qc3/pcp1.6/match_geod', # 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.6/L3-L5_files/ERA5/elev_bands/qc0/pcp1.6/match_geod_pergla', # # 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/ERA5/elev_bands/qc3/pcp1.6/match_geod_pergla_massredis', # ] # base_urls = [ # 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/ERA5/elev_bands/qc3/pcp1.6/match_geod_pergla', # # 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/ERA5/elev_bands/qc3/pcp1.6/match_geod_pergla_massredis', # ] base_urls = [ 'https://cluster.klima.uni-bremen.de/~fmaussion/runs/new_gdirs/oggm_v1.6/L3-L5_files/ERA5/elev_bands/qc3/match_geod_pergla_1.6_qc3', # 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/ERA5/elev_bands/qc3/pcp1.6/match_geod_pergla_massredis', ] for base_url in base_urls: # Go - get the pre-processed glacier directories gdirs = workflow.init_glacier_directories(rgi_ids, from_prepro_level=5, prepro_base_url=base_url, prepro_rgi_version=rgi_version) cfg.PARAMS['climate_qc_months'] = 3 # if 'match_geod_pergla' in base_url: # cfg.PARAMS['climate_qc_months'] = 0 gcms = pd.read_csv('/home/www/oggm/cmip6/all_gcm_list.csv', index_col=0) n_gcms = len(sys.argv) - 1 for gcm in sys.argv[1:]: df1 = gcms.loc[gcms.gcm == gcm] for ssp in df1.ssp.unique(): df2 = df1.loc[df1.ssp == ssp] assert len(df2) == 2 ft = df2.loc[df2['var'] == 'tas'].iloc[0] fp = df2.loc[df2['var'] == 'pr'].iloc[0].path rid = ft.fname.replace('_r1i1p1f1_tas.nc', '') ft = ft.path log.workflow('Starting run for {}'.format(rid)) workflow.execute_entity_task(gcm_climate.process_cmip_data, gdirs, filesuffix='_' + rid, # recognize the climate file for later fpath_temp=ft, # temperature projections fpath_precip=fp, # precip projections year_range=('1981', '2018'), ); if 'massredis' in base_url: from oggm.core.flowline import MassRedistributionCurveModel evolution_model = MassRedistributionCurveModel else: from oggm.core.flowline import FluxBasedModel evolution_model = FluxBasedModel workflow.execute_entity_task(tasks.run_from_climate_data, gdirs, climate_filename='gcm_data', # use gcm_data, not climate_historical climate_input_filesuffix='_' + rid, # use a different scenario init_model_filesuffix='_historical', # this is important! Start from 2019 glacier output_filesuffix=rid, # recognize the run for later evolution_model=evolution_model, return_value=False, ye=2100, ); gcm_dir = os.path.join(OUTPUT_DIR, base_url.split('L3-L5_files/')[-1].split('/')[-1], 'RGI' + rgi_reg, gcm) utils.mkdir(gcm_dir) utils.compile_run_output(gdirs, input_filesuffix=rid, path=os.path.join(gcm_dir, rid + '.nc')) log.workflow('OGGM Done')