{ "cells": [ { "cell_type": "markdown", "id": "2adf83f4-2942-4bc4-a490-1bd1c59fbfc6", "metadata": {}, "source": [ "# Assess termporal irrevesibility\n", "- by changing the \"temp. lapse rate\" and the \"prcp. factor ...\n", "--> actually less straightforward then I expected ..." ] }, { "cell_type": "code", "execution_count": 1, "id": "f35d8a95-076e-4728-a385-166ba77817af", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-04-09 10:48:31: oggm.cfg: Reading default parameters from the OGGM `params.cfg` configuration file.\n", "2025-04-09 10:48:31: oggm.cfg: Multiprocessing switched OFF according to the parameter file.\n", "2025-04-09 10:48:31: oggm.cfg: Multiprocessing: using all available processors (N=32)\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set_context('notebook') \n", "import xarray as xr\n", "import salem\n", "import numpy as np\n", "import pandas as pd\n", "import geopandas as gpd\n", "import json\n", "\n", "import oggm.cfg\n", "from oggm import utils, workflow, tasks, graphics\n", "from oggm.sandbox.edu import run_constant_climate_with_bias\n", "# OGGM options\n", "oggm.cfg.initialize(logging_level='WARNING')" ] }, { "cell_type": "code", "execution_count": 2, "id": "017cada0-9efd-4906-a256-557328ab3fe2", "metadata": {}, "outputs": [], "source": [ "plt.rcParams[\"pdf.use14corefonts\"] = False # don't convert text to path\n", "plt.rcParams['pdf.fonttype']=42 # do nout line text?" ] }, { "cell_type": "code", "execution_count": 9, "id": "e4ea3400-beeb-4689-81fd-5acd6c1ee14a", "metadata": {}, "outputs": [], "source": [ "frgi = utils.file_downloader('https://cluster.klima.uni-bremen.de/~oggm/rgi/rgi62_stats.h5')\n", "odf = pd.read_hdf(frgi, index_col=0)\n", "# We pick the same preprocessed gdirs as we will use for the actual projections later\n", "base_url = 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.6/L3-L5_files/2023.3/elev_bands/W5E5_spinup'\n", "\n", "# utils.gettempdir(dirname='WaterResources')\n", "oggm.cfg.PARAMS['min_ice_thick_for_length'] = 1 # a glacier is defined when ice is thicker than 1m\n", "oggm.cfg.PARAMS['store_model_geometry'] = True\n", "run = True\n", "run_spinup = True\n", "# this loads a bit faster the figures... as we use the preprocessed files (specifically if later run_spinup is set to False)\n", "# (if you run for the first time, you have to set run=True and run_spinup to True and then create your own directory ...)\n", "folder_path = 'data_idealised_exps_preprocessing'\n", "oggm.utils.mkdir(folder_path)\n", "oggm.cfg.PATHS['working_dir'] = f'{folder_path}/oggm_dir_idealised'" ] }, { "cell_type": "code", "execution_count": 10, "id": "2ad5c20d-d57d-465d-8f48-a4770bcb7253", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['RGI60-11.01450', 'RGI60-04.06187']\n" ] } ], "source": [ "rgi_ids = []\n", "# chosen largest glaciers for Fig. 1 and suppl. idealised figures:\n", "for rreg in ['11',#'13',#'16','01',\n", " #'03',\n", " '04']:\n", " _r_id = odf.loc[odf.O1Region==rreg].sort_values(by='Area', ascending=False).index[0]\n", " rgi_ids.append(_r_id)\n", "print(rgi_ids)\n", "### other potential largest glaciers of regions:\n", "# RGI60-17.05181" ] }, { "cell_type": "code", "execution_count": 11, "id": "91ee137f-aa81-4e67-b09d-40820c604a7d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-04-09 10:59:58: oggm.workflow: Execute entity tasks [GlacierDirectory] on 2 glaciers\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "RGI60-11.01450 \n", "RGI60-04.06187 Barnes Ice Cap South Dome N Slope\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABL0AAAJzCAYAAADqc2FfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVXklEQVR4nOzdd1gU178G8Hd3gWUp0sGCgFixYO9dFMWCvcZEo6LEWBJji91EjSUmMRp71OjPdlVM7CKKsTeMiQ2ViGIhSAfpuzv3D+LoBkRAYBZ4P8/Dc+ecOTPzDrvxuXx/Z87IBEEQQEREREREREREVILIpQ5ARERERERERERU0Fj0IiIiIiIiIiKiEodFLyIiIiIiIiIiKnFY9CIiIiIiIiIiohKHRS8iIiIiIiIiIipxWPQiIiIiIiIiIqISh0UvIiIiIiIiIiIqcVj0IiIiIiIiIiKiEodFLyIiIiIiIiIiKnFY9CIiIiIiIiIiohKHRS8iIiIiIqJiJi0tDSNGjICTkxPKlCmDZs2a4eLFi1LHIiLSKyx6ERERERERFTNqtRouLi44d+4c4uLi8Nlnn6FHjx54+fKl1NGIiPQGi15ERERERLm0ZcsWyGQyPHr0qFhf413XmzdvHmQyGaKioookw/sq6t/Zm5YuXYoaNWpAq9WKfUXx+zM1NcWcOXPg5OQEuVyOQYMGwcjICPfu3RPHrF27Fk5OTkhLSyu0HERE+oxFLyIiIiLSG6tXr4ZMJkPTpk2ljlIsXbhwAfPmzUNcXJzUUbLQ52z5lZCQgCVLlmDatGmQy6X90+rBgweIiYlBlSpVxL7hw4cjPT0d69atkzAZEZF0WPQiIiIiIr2xfft2uLi44MqVKwgJCZE6ThYffvghUlJS4OzsLHWUbF24cAHz58/PU2GpqO4pP9lyS6rPZdOmTVCr1Rg8eHCRXve/UlJSMHToUHz55ZewsLAQ+42NjTFs2DB89913EARBwoRERNJg0YuIiIiI9EJoaCguXLiA7777DnZ2dti+fXuujktKSirkZK8pFAoYGxtDJpMV2TULy6vfW3G/p6SkJMnuYfPmzfD29oaxsXGRXvdNGRkZ6N+/P6pUqYI5c+Zk2T9gwAA8fvwYgYGBEqQjIpIWi15EREREpBe2b98OKysrdOvWDf369cu26PVqraQ7d+5gyJAhsLKyQqtWrcT9z549w4gRI+Dg4AClUolatWph06ZNOud4/Pgxxo4di+rVq0OlUsHGxgb9+/fP1XpQOa1/FRISguHDh8PS0hIWFhb4+OOPkZycnOUcz549w8iRI1G+fHkolUpUqlQJn3zyCdLT03P/y8rGvHnzMGXKFABApUqVIJPJxKw5/d5yWg8rKioKAwYMQJkyZWBjY4OJEyciNTVV3D98+HC4uLhkm+XNAlRO2fLyebztPt52D7n5PiQmJuKzzz6Di4sLlEol7O3t0alTJ1y/fj3H33doaCj++usvdOzYMcdxrzx+/BhVqlRB7dq1ERERId7L/fv3MXToUFhYWMDOzg6zZ8+GIAh48uQJevbsiTJlyqBs2bJYvnx5lnNqtVp8+OGHkMlk+OWXX7It+jVs2BDW1tb47bffcpWTiKgkMZA6ABERERERkFn06tOnD4yMjDB48GCsWbMGV69eRePGjbOM7d+/P6pWrYpFixaJj21FRESgWbNmkMlkGDduHOzs7HD06FGMHDkSCQkJ+OyzzwAAV69exYULFzBo0CA4Ojri0aNHWLNmDdq1a4c7d+7AxMQkX/kHDBiASpUq4ZtvvsH169exceNG2NvbY8mSJeKY58+fo0mTJoiLi8Po0aNRo0YNPHv2DHv37kVycjKMjIzydW0A6NOnD+7fv4+dO3fi+++/h62tLQDAzs5OHJPd7+1d9+Ti4oJvvvkGly5dwo8//ojY2Fhs3bq1wLIdPXo0z59Hbu4jt98HX19f7N27F+PGjUPNmjURHR2Nc+fO4e7du2jQoMFb7+nChQsAkOOYV/7++2906NAB1tbWOHHihHj/ADBw4EC4ublh8eLFOHz4MBYsWABra2usW7cOHTp0wJIlS7B9+3ZMnjwZjRs3Rps2bcRjx4wZg/DwcBw/fhwGBm//065BgwY4f/78O3MSEZU4AhERERGRxK5duyYAEE6cOCEIgiBotVrB0dFRmDhxos64uXPnCgCEwYMHZznHyJEjhXLlyglRUVE6/YMGDRIsLCyE5ORkQRAE8f++6eLFiwIAYevWrTnm3Lx5swBACA0NzZJpxIgROmN79+4t2NjY6PR99NFHglwuF65evZrl3Fqt9q3XyK1ly5Zle2xOv7ec7snb21tn7NixYwUAwp9//ikIgiAMGzZMcHZ2znLOV8fnJltePo+33Ud295Db74OFhYXw6aefZsnwLrNmzRIACImJiVn2vcoZGRkp3L17VyhfvrzQuHFjISYmJsuY0aNHi31qtVpwdHQUZDKZsHjxYrE/NjZWUKlUwrBhw8S+R48eCQAEY2NjwdTUVPw5c+ZMljyjR48WVCpVnu+RiKi44+ONRERERCS57du3w8HBAe3btwcAyGQyDBw4ELt27YJGo8ky3tfXV6ctCAL27duHHj16QBAEREVFiT+dO3dGfHy8+LiaSqUSj8vIyEB0dDSqVKkCS0vLdz7SlpP/ZmrdujWio6ORkJAAIPNRtF9//RU9evRAo0aNshxfFOtR/Tfju3z66ac67fHjxwMAjhw5UmCZ8vN5vOs+8vJ9sLS0xOXLl/H8+fM85Y6OjoaBgQHMzMzeOubWrVto27YtXFxcEBAQACsrqyxjRo0aJW4rFAo0atQIgiBg5MiRYr+lpSWqV6+Ohw8fin3Ozs4QBAEpKSl4+fKl+NO6dess17CyskJKSkq2j9sSEZVkLHoRERERkaQ0Gg127dqF9u3bIzQ0FCEhIQgJCUHTpk0RERGBkydPZjmmUqVKOu3IyEjExcVh/fr1sLOz0/n5+OOPAQAvXrwAkPmmuzlz5qBixYpQKpWwtbWFnZ0d4uLiEB8fn+/7cHJy0mm/KnDExsaKGRMSElC7du18X+N9/ff39i5Vq1bVaVeuXBlyuTxX65/lVn4+j3fdR16+D0uXLsWtW7dQsWJFNGnSBPPmzdMpLr2PHj16wNzcHMePH0eZMmWyHfPf742FhQWMjY11HoF81f/qu5RXwr+PgBbXlxUQEeUX1/QiIiIiIkmdOnUK4eHh2LVrF3bt2pVl//bt2+Hp6anT9+bsICBzFhUADB06FMOGDcv2Ou7u7gAyZytt3rwZn332GZo3bw4LCwvIZDIMGjRIPE9+KBSKbPuFXKydVVT++3vLq/8WTd5WRMludt7b5OfzeNd95OX7MGDAALRu3Rr79++Hv78/li1bhiVLlsDPzw9eXl5vvYaNjQ3UajUSExNhbm6e7Zi+ffvil19+wfbt2zFmzJhsx2T3vSno71JsbCxMTEze+/MnIipuWPQiIiIiIklt374d9vb2+Omnn7Ls8/Pzw/79+7F27doc/2C3s7ODubk5NBrNO9+mt3fvXgwbNkznbXipqamIi4vL9z3khp2dHcqUKYNbt24V2jUKeibPgwcPdGZVhYSEQKvVim9stLKyyvb39vjx41xnK4zPIy/fBwAoV64cxo4di7Fjx+LFixdo0KABFi5cmGPRq0aNGgAy3+L4qoD2X8uWLYOBgQHGjh0Lc3NzDBkyJH839J5CQ0Ph5uYmybWJiKTExxuJiIiISDIpKSnw8/ND9+7d0a9fvyw/48aNQ2JiIg4cOJDjeRQKBfr27Yt9+/ZlW1SKjIzUGfvfGTMrV67M0+yk/JDL5ejVqxcOHjyIa9euZdn/tlk8ycnJCA4ORlRU1DuvYWpqCgAFVsD7byFy5cqVACAWgypXroz4+Hj89ddf4pjw8HDs378/19kK4/PI7fdBo9FkeYTS3t4e5cuXR1paWo7XaN68OQBk+1m+IpPJsH79evTr1w/Dhg175/e4sFy/fh0tWrSQ5NpERFLiTC8iIiIiksyBAweQmJgIb2/vbPc3a9YMdnZ22L59OwYOHJjjuRYvXozAwEA0bdoUPj4+qFmzJmJiYnD9+nUEBAQgJiYGANC9e3ds27YNFhYWqFmzJi5evIiAgADY2NgU+P3916JFi+Dv74+2bdti9OjRcHNzQ3h4OPbs2YNz587B0tIyyzFXrlxB+/btMXfuXMybNy/H8zds2BAAMHPmTAwaNAiGhobo0aNHvvOGhobC29sbXbp0wcWLF/G///0PQ4YMQd26dQEAgwYNwrRp09C7d29MmDABycnJWLNmDapVq5ZlEfq3ZSuszyM334fExEQ4OjqiX79+qFu3LszMzBAQEICrV6/qzDzLjqurK2rXro2AgACMGDHirePkcjn+97//oVevXhgwYACOHDmCDh06vNe95UVQUBBiYmLQs2fPIrsmEZG+YNGLiIiIiCSzfft2GBsbo1OnTtnul8vl6NatG7Zv347o6Ogcz+Xg4IArV67gq6++gp+fH1avXg0bGxvUqlULS5YsEcetWLECCoUC27dvR2pqKlq2bImAgAB07ty5QO8tOxUqVMDly5cxe/ZsbN++HQkJCahQoQK8vLxgYmLy3udv3Lgxvv76a6xduxbHjh2DVqtFaGhovs+3e/duzJkzB9OnT4eBgQHGjRuHZcuWifttbGywf/9+TJo0CVOnTkWlSpXwzTff4MGDB1mKXm/LVlifR26+DyYmJhg7diz8/f3h5+cHrVaLKlWqYPXq1fjkk0/eeY0RI0Zgzpw5SElJyfHxW0NDQ+zduxdeXl7o2bMnAgIC3uve8mLPnj1wcnIq0kIbEZG+kAn6tLImERERERFRMREfHw9XV1csXboUI0eOlDpOFmlpaXBxccH06dMxceJEqeMQERU5rulFRERERESUDxYWFpg6dSqWLVv2Xm/+LCybN2+GoaEhfH19pY5CRCQJzvQiIiIiIiIiIqIShzO9iIiIiIiIiIioxGHRi4iIiIiIiIiIShwWvYiIiIiIiIiIqMRh0YuIiIiIiIiIiEocFr2IiIiIKFdCQkLg6+uLevXqwcDAALVr19bZn5CQgHnz5qFJkyawtLSEg4MDevTogZs3b77z3KdPn4ZMJsvyM2jQIEnu5ZWff/4Z1apVg7GxMerWrYtDhw7l6vzPnz9H3759YW5uDmtra4waNQoJCQkFeQs5ateuXba/T5lMhl27dr31OBcXl2yPSU1NLbLs/7Vly5ZsM02fPj3H4wRBwOLFi+Hk5ASVSoXmzZvj0qVLRZQ6e3v27EHPnj3h6OgIU1NT1KtXD5s2bcK73i2mj58LAAQHB6NTp04wNTVF2bJlMXXqVKSnp7/zOH38bIioZDKQOgARERERFQ+3b9/G4cOH0bRpU2i1Wmi1Wp39YWFhWLduHUaOHIkFCxYgNTUV3377LZo1a4Zr167Bzc3tndfYvHkzatSoIbZtbW0L/D6Ad98LAOzatQs+Pj6YOXMmOnTogN27d6N37944e/YsmjVr9tZzZ2RkoHPnzgCAHTt2IDk5GZMnT8aQIUNyXTR7X6tXr85SZPvhhx+wb98+dOzYMcdj+/Xrhy+++EKnT6lUFnjGvDp27BgsLCzEdoUKFXIcv2TJEsydOxeLFy+Gu7s7fvrpJ3h6euLGjRtwdXUt7LjZ+u677+Di4oLly5fDzs4OJ06cgI+PD548eYK5c+fmeKy+fS6xsbHo0KEDqlatCj8/Pzx79gyTJk1CcnIyVq1aleOx+vjZEFEJJRARERER5YJGoxG3hw0bJtSqVUtn/8uXL4WkpCSdvsTERMHa2loYN25cjucODAwUAAhXr14tuMA5eNe9CIIgVKtWTRg8eLBOX/PmzQUvL68cz71jxw5BJpMJwcHBYt/x48cFAMLly5ffM3n+VapUSejatWuOY5ydnYVPP/20iBLlzubNmwUAQmRkZK6PSUlJEcqUKSN8+eWXYl9aWprg7OwsfPLJJ4URM1eyuwcfHx+hTJkyOt/J/9LHz2XRokWCqampEB0dLfatW7dOUCgUwrNnz956nL5+NkRUMvHxRiIiIiLKFbk85//X0dTUFCYmJjp9ZmZmqFKlCp4/f16Y0fLsXffy8OFD3L9/HwMGDNDpHzRoEE6ePIm0tLS3Hnv06FG4u7ujevXqYl+nTp1gbW2NI0eOvF/wfLpw4QJCQ0PxwQcfSHL9onbhwgUkJCTofH5GRkbo06ePZJ8BkP3Mxfr16yMhIQFJSUkSJMq/o0ePomPHjrC2thb7BgwYAK1WC39//7cep6+fDRGVTCx6EREREVGhiYuLw61bt3L1aCMAdO3aFQqFAo6OjpgyZQpSUlIKOWH2goODAUDnUUsAcHNzQ3p6OkJDQ3M89r/HyWQy1KhRQzxvUduxYwdMTU3Rs2fPd47dvn07lEolzMzM0LVr11ytyVYUatWqBYVCAVdXV3zzzTfQaDRvHZvT5xcWFibZ9yo7586dQ4UKFWBubp7jOH37XLL7nltaWqJcuXI5fs+L02dDRMUf1/QiIiIiokIzdepUyGQy+Pr65jjOwsICU6dORZs2baBSqXDq1Cl8++23uHv3bpGtg/Wm2NhYAJl/xL/JysoKABATE5Pjsf897tWxOR1XWNRqNf7v//4P3t7eMDU1zXGst7c3mjZtCicnJzx8+BALFy5Eq1at8Mcff0i21lK5cuUwf/58NG3aFDKZDAcOHMCsWbPw7Nmzt64dFRsbC6VSCWNjY51+KysrCIKA2NhYqFSqooifo3PnzmHXrl1Yvnx5juP08XPJ7/e8uHw2RFQysOhFRERERIVi8+bN2LBhA7Zs2QJHR8ccx9avXx/169cX2x06dEC5cuUwbtw4XLlyBU2aNCnsuCXWiRMnEBkZiSFDhrxz7I8//ihut27dGp6enqhRowa+/fZbrF69ujBjvlXnzp3FFwMAgKenJ1QqFb7//nvMnDkT5cqVkyTX+3r69CkGDhyI9u3bY8KECTmO1cfPhYioOODjjURERERU4I4ePYrRo0dj9uzZGDZsWL7O8WrNn6CgoIKMliuvZnTFx8fr9L+aAfbmOkbZHfvf414dm9NxhWXHjh2wsbHRKRzlVrly5dCqVStJPoOcDBgwABqNBjdu3Mh2v5WVFdLS0pCamqrTHxsbC5lMJn6+UomLi4OXlxdsbGywb9++d64x91/68Lnk93uu758NEZUsLHoRERERUYG6dOkS+vXrh2HDhuGrr76SOk6+vFpv6L9rEwUHB8PIyCjHR8qyW7tLEATcu3cvyzpGhS0lJQW//vor+vfvD0NDwyK9tpRe/Z7v3bun0x8cHAwnJydJH59LSUlB9+7dER8fj6NHj8LCwkKyLO8ju+95fHw8wsPDc/ye6/NnQ0QlD4teRERERFRg7ty5g27duqFDhw5Yu3bte51r165dAIDGjRsXRLQ8cXV1RbVq1bBnzx6d/t27d8PDwwNGRkZvPdbLywt//vknHjx4IPadPHkS0dHR6Nq1a6Flzs6BAwfw8uXLXD3amJ3nz5/j3LlzknwGOdm1axcUCoXOI7FvatGiBcqUKaPz+WVkZMDPz6/IP4M3qdVqDBgwAHfv3sWxY8dQoUKFfJ1HHz4XLy8vBAQEIC4uTuzbs2cP5HI5PD0933qcvn42RFQycU0vIiIiIsqV5ORkHDlyBADw+PFjJCQkYO/evQCAtm3bQhAEdO7cGSqVCp9//jmuXbsmHlumTBnUrFlTPLZy5cqYM2cO5syZAwAYOnQoqlSpggYNGsDY2BinTp3C999/j169eqFRo0ZFfi92dnaYN28ePvjgA1SuXBnt27fH7t27cfnyZZw5c0Y8T3b30q9fPyxatAh9+/bFokWLkJycjMmTJ6Nbt25FvjbZjh074OTkhFatWmXZ5+HhgcePHyMkJAQAsHPnThw6dAhdu3ZF+fLl8fDhQ3zzzTdQKBT44osvijT3mzp37owOHTqgTp06ADILeevXr8fEiRNRtmzZbO/F2NgYX375JebNmwc7OzvUqVMHq1evRnR0NCZPnizZvYwdOxaHDh3C8uXLkZCQgEuXLon76tevD6VSWWw+F19fX6xcuRK9evXCjBkz8OzZM0yZMgW+vr4oX768OK64fDZEVEIJRERERES5EBoaKgDI9icwMFAIDAx86/62bdtmOc/cuXPFvkWLFgm1atUSzMzMBENDQ6FatWrCvHnzhLS0NEnu5ZWNGzcKVapUEYyMjIQ6deoIBw8ezPY8b96LIAjC06dPhT59+ghmZmaCpaWlMGLECCE+Pr5Q7uVtYmJiBCMjI2Hq1KnZ7m/btq3g7Owsti9evCi0a9dOsLW1FQwMDARbW1thwIABQnBwcBElzt6ECROEqlWrCiqVSlAqlUKdOnWEFStWCFqtVhzz33sRBEHQarXCokWLBEdHR0GpVApNmzYVLly4UMTpdTk7O7/1excaGioIQvH5XARBEO7cuSN4eHgIKpVKsLe3FyZPnpzlv9ni8tkQUckkEwRBKKoCGxERERERERERUVHgml5ERERERERERFTisOhFREREREREREQlDoteRERERERERERU4rDoRUREREREREREJQ6LXkREREREREREVOKw6EVERERERERERCUOi15EREREVKhcXV3h6uoqdYwCUZLuBShZ98N70U8l6V6IqPhh0YuIiIiIiIiIiEocFr2IiIiIiIiIiKjEYdGLiIiIiIiIiIhKHBa9iIiIiIiIiIioxGHRi4iIiIiIiIiIShwWvYiIiIiIiIiIqMQxkDpASdO2bVsAwO+//y5xEiIiIiIiImmFh4dLHYGISjEWvQrYkydPpI6QrXpD9uHP+9GQy2WIPTUMZcyMpI5EREREekQmk5WIaxSVknQvQMm6H96L/qlUqZLUEYiolGLRq5RoWdcBf96PhlYr4NKtF/Bs5ih1JCIiItIjL1++lDoCERUDp+5G5Gn8uHHjgBfBhZSGiChnLHqVEi3rlsXqPXcAAOf//IdFLyIiItJhamoqdQQiKgZUJnn7t0Ku4J+cRCQdLmRfSrSqV1bcPv9n3v7XGSIiIiIiIiKi4oZFr1LCqawZHB0y/1eZSzcjoFZrJU5ERERERERERFR4WPQqRVq6OwAAklLU+PNBtMRpiIiIiIiIiIgKD4tepUiz2nbiNh9xJCIiIiIiIqKSjKsKlgLb1xzAsV/+REK6FSA3AgCcu/EPJgyqLXEyIiIiIiIiIqLCwaJXKZCSlAYTtQOM5YAhgAxkvsFREATIZDKp4xERERERERERFTg+3lgKdO7bEkDmh23/b9/zyGQ8Dn8pWSYiIiIiIiIiosLEolcpULFSeSRrMxeuL/tG//k//5EmEBERERERERFRIWPRq5RQ2WkBAA5v9J27waIXEREREREREZVMLHqVElXqZc7xsgfwahUvvsGRiIiIiIiIiEoqFr1KiXbdGgEAjADY/Nt36+8YxCWmSZaJiIiIiIiIiKiwsOhVSjRqVQepmsyF61894igIwMW/ONuLiIiIiIiIiEoeFr1KCblcDplZZtFLdzF7Fr2IiIiIiIiIcjJv3jzIZDLxx9jYGG5ubli6dCm0Wm2BXCMuLg4ymQxbtmx559ibN2/C3NwckZGRYt+b+YyMjFC9enXMmDEDSUlJBZIvN7Zs2QKZTIaoqKg8H9upUycsXLiwQPMYFOjZSK9VqG6JqBu6Ra/fr4dLFYeIiIiIiIio2FCpVDh16hQAICUlBYGBgZg+fTq0Wi2mT59epFlmzZqF4cOHw87OTqd//PjxGDJkCFJTUxEQEIDFixcjNDQUO3fuLNJ8+TFjxgz06dMHY8eOhZWVVYGck0WvUqRZx9o4dCMEpgAsAMQDuHzrBZJSMmCqMpQ4HREREREREZH+ksvlaNasmdhu3749bt68CT8/vyItej18+BAHDx5EUFBQln1OTk5ixnbt2iE8PBybNm3CypUrYWtrm6/rpaSkQKVSvVfm3Gjfvj2srKzwyy+/4LPPPiuQc/LxxlLEo0dzqLXpAIDy//ZlqLU4+8c/0oUiIiIiIiIiKqbMzc2RkZGh05eWloYZM2bA2dkZSqUSbm5u2LFjR5ZjN2zYABcXF5iYmMDDwwMhISG5uubWrVvh6uqK+vXrv3Nso0aZL7ULDQ1FcHAwBg0ahIoVK8LExAQ1a9bE8uXLdR7PfPTokfiIpY+PD2xsbNCkSRMAwOHDh9GpUyfY29ujTJkyaNq0KY4dO5btdUNCQtChQweYmJjAxcUFmzZtytW99e/fH7/88kuuxuYGZ3qVIiamKqQbxMJA64AKAO7+23/y6jN0aVFRymhERERERERUSsTHx+PmzZtSx0CdOnVgYWGRp2PUajWA14837tu3DzNmzNAZM2DAAJw7dw5z586Fm5sbjhw5gqFDh8LKygpeXl4AgEOHDmH06NEYPnw4Bg0ahKCgIPTv3z9XGQICAtCiRYtcjQ0NDQUAlC9fHsHBwahevTo++OADmJub48aNG5g7dy5evnyJuXPn6hz35Zdfolu3bti5c6dYFAsNDUWPHj0wefJkyOVyHD16FF27dsWpU6fQrl07neMHDRqEMWPGYNq0adi1axdGjhyJ8uXLo0uXLjnmbdGiBZYuXYrIyMgsj27mB4tepYyNizFSHr6e6QUAJ688kywPERERERERlS43b95E69atpY6Bs2fPolWrVrken5SUBEND3aWBBg4cqPNoY2BgIA4cOIDjx4/D09MTQOYC7eHh4Zg7d65Y9FqwYAFat26NzZs3AwA6d+6M1NRUfP311zlmEAQB165dQ69evbLdr9VqoVarxTW91qxZg+bNm6NChQqoUKECPDw8xPO0atUKycnJWLVqVZaiV7169bBx40advnHjxulcp3379rh9+zbWr1+fpej10Ucf4csvvxTv7eHDh5g/f/47i15169YFAFy5cgXdunXLcWxu8PHGUqZuC1cAgDEAm3/7btyPRnRcqmSZiIiIiIiIiPSdSqXC1atXcfXqVZw7dw4rVqzAsWPH4OPjI47x9/eHtbU1OnToALVaLf506tQJf/zxBzQaDTQaDYKCgtC7d2+d8/fr1++dGWJjY5GWlvbWWVDTpk2DoaEhzM3N0bt3bzRv3lx8tDI1NRVz585FlSpVoFQqYWhoiJkzZyI8PBwvX77UOU92BaenT59i2LBhqFChAgwMDGBoaAh/f3/cv38/y9j/3lvfvn0RFBQEjUaT4/29WncsPLxgXrrHmV6ljGefVrj0v98AABUARAMQBOB00HP09XCVNBsRERERERGRvpLL5eIaWQDQsmVLqNVqfPHFF5g0aRJq166NqKgoxMTEZJkR9kp4eDgMDAygVqthb2+vs8/BweGdGVJTMyesKJXKbPdPnDgRQ4cOhVKphIuLC8zNzcV906ZNw4YNGzB37lw0bNgQlpaW+O2337BgwQKkpqbCzMzsrVm0Wi28vb0RHx+Pr776ClWqVIGpqSnmzJmDsLCwLDmyu7eMjAxERUXleJ+v7islJeUdv4ncYdGrlKng5IAkbTRM5TYoD+Cvf/tPXmXRi4iIiIiIiApfnTp1cPbsWaljoE6dOu99Djc3NwDA7du3Ubt2bVhbW8POzg5HjhzJdry9vT0UCgUMDAzw4sULnX0RERHvvJ61tTUAIC4uLtv9jo6OOoW5N+3Zs0dcZ+uVw4cPZztWJpPptENCQvDHH3/g119/Rc+ePcX+txWnXrx4gQoVKojtiIgIGBoavvMNkq/uy8bGJsdxucWiVylk6qAFIoFyAGSCAEEm47peREREREREVCQsLCzytJaWPrt16xaA14/ldezYEUuXLoWRkRHc3d3felyDBg2wf/9+fP7552Lf3r1733k9Y2NjODk5iQvU50VKSgqMjIzEtkajwa5du3J9LACd4x8/fozz58+jWrVqWcbv379f5+2S+/btQ8OGDaFQKHK8zqNHjwAA1atXz1Wud2HRqxSq3qAC7h1PhyEAB5kM/wC4HxaPpxEv4ehg9q7DiYiIiKgUC7jz7pkIREQlkVarxaVLlwAA6enpCAoKwoIFC1CzZk20adMGQOai9T169ECXLl0wdepUuLu7IykpCbdv30ZISIi4OPzMmTPRs2dPfPzxx+LbG7dt25arHC1btkRQUFCe83fq1AkbNmxAzZo1YWtri9WrVyMtLS1Xx9aoUQOOjo6YPn06NBqN+MbHN2dzvWnr1q1QqVRo0KABdu3ahTNnzujMKtu6dStGjBiBkydPom3btmL/tWvXYGZmhnr16uX5/rLDhexLoW6D2ojbb77F8dTV50UfhoiIiIiIiKgYSElJQfPmzdG8eXN4eHhg5cqVGDp0KAIDA3XW8Nq7dy98fX2xevVqeHl5YeTIkfD399cp7nh7e2Pt2rU4efIkevXqBX9/f+zevTtXOfr164fz588jMTExT/lXrlyJtm3bYvz48Rg5ciTq1KmDGTNm5OpYpVIJPz8/KJVK9O/fH3PmzMHMmTN17ulNO3fuxPHjx9GrVy+cOnUK69evR9euXcX9Wq0WGo0GgiDoHHf06FH07t37nTPCcksm/PcK9F5cXTPXxXr48KHESXL2YYNvYCK3QTiAg//2fdStKn6Z317KWERERESk5zjTi/LCx8cHsvBbev/3EVFxkpGRAScnJyxZsgQfffSR1HEKTGxsLMqWLYsTJ06IM+feF2d6lVKmZTNrnfYADP6te568+jxLlZWIiIiIiIiI9IehoSGmT5+OFStWSB2lQK1cuRItW7YssIIXwKJXqeXe0gUAoABQ9t+3Mjx7kYT7j+OlC0VERERERERE7+Tr64tevXohKipK6igFxtraGj/++GOBnpNFr1Kqx5B2EAQtAODNZedOXeO6XkRERERERET6TKlUYvbs2eJbI0uCcePGoXbt2gV6Tha9SqmKlcojGdEAgHJv9J//8x9pAhERERERERERFSAWvUoxy4qZb0OwBaD4dy2vC39xYVIiIiIiIiIiKv5Y9CrFGrarCiDzS2D/77peoc8SER6VLGEqIiIiIiIiIqL3x6JXKdZ9cHtoBQ0AwOGN/vM3+IgjERERERERERVvLHqVYnYO1kiRZ67rVfaNfq7rRURERERERETFHYtepZydqxIAYP9GH9f1IiIiIiIiIqLijkWvUq5px5oAAGMAlv/2XQ+OQnKqWqpIRERERERERHpl3rx5kMlk4o+xsTHc3NywdOlSaLXaArlGXFwcZDIZtmzZ8s6xN2/ehLm5OSIjI7Nky+7HxcWlQDLmlY+PD3x8fCS5NgAYSHZl0gvdBrTDiTWbYSA3QlkAcQDUGgFXb79A24blJU5HREREREREpB9UKhVOnToFAEhJSUFgYCCmT58OrVaL6dOnF2mWWbNmYfjw4bCzs8OoUaPQpUsXcd/GjRuxY8cOMSsAKJXKIs33yrRp01CrVi1MnToVVatWLfLrs+hVyplbmCLdKBYGagc4AAj+t//8nxEsehERERERERH9Sy6Xo1mzZmK7ffv2uHnzJvz8/Iq06PXw4UMcPHgQQUFBAABHR0c4OjqK+48dO5Yl63+lpKRApVIVetYqVaqgZcuW+Omnn/DDDz8U+vX+i483EuwqZX7R31zMnut6EREREREREeXM3NwcGRkZOn1paWmYMWMGnJ2doVQq4ebmhh07dmQ5dsOGDXBxcYGJiQk8PDwQEhKSq2tu3boVrq6uqF+/fq5zymQyLF68GNOmTUPZsmVhb5+5svfFixfh7e2N8uXLw9TUFPXq1cO2bdt0jj19+jRkMhmOHDmCPn36wNTUFOXKlcOiRYtyde3+/ftj+/btUKuLfhklzvQiuDdzxcUHUSiDzLW9UpFZ9NJqBcjlMonTERERERERUUmS8jIdz0JipI6BClWsoTIzytMxrwo3rx5v3LdvH2bMmKEzZsCAATh37hzmzp0LNzc3HDlyBEOHDoWVlRW8vLwAAIcOHcLo0aMxfPhwDBo0CEFBQejfv3+uMgQEBKBFixZ5yg0AK1asQLNmzfDzzz+L9/H48WO0bNkSvr6+MDY2xvnz5zFy5EhotVoMGzZM5/jRo0dj8ODB8PPzQ0BAAGbOnAlra2v4+vrmeN0WLVogKioKN27cQKNGjfKc+32w6EXo2LMFLm47ABkABwCPAcQmpCH4URxqulpJnI6IiIiIiIhKkmchMVg26oDUMTBlozeq1Cv77oH/SkpKgqGhoU7fwIEDdR5tDAwMxIEDB3D8+HF4enoCADp16oTw8HDMnTtXLHotWLAArVu3xubNmwEAnTt3RmpqKr7++uscMwiCgGvXrqFXr165zv2KtbU1/Pz8IJO9ntwyaNAgnXO3adMGT58+xbp167IUvTp06IBly5aJeSMiIrBgwQKMHj0acvnbHySsVasWFAoFLl++XORFLz7eSHB0KYtkbWaV/c3/3M//+Y80gYiIiIiIiIj0jEqlwtWrV3H16lWcO3cOK1aswLFjx3TeTujv7w9ra2t06NABarVa/OnUqRP++OMPaDQaaDQaBAUFoXfv3jrn79ev3zszxMbGIi0tDXZ2dnnO7+XlpVPwenW+CRMmwNnZGYaGhjA0NMT69etx//79LMdnl/fZs2d4+vRpjtc1MDCApaUlwsPD85z5fXGmFwEAlNZqIC5zptcrF/6KgE9vN6kiEREREREREekNuVyuM1OpZcuWUKvV+OKLLzBp0iTUrl0bUVFRiImJyTIj7JXw8HAYGBhArVaL62q94uDgkO0xb0pNTQWQv7cxZnf+4cOH48KFC5gzZw5q1aqFMmXKYM2aNdi9e3eWsW/LGx4eDicnpxyvrVQqkZKSkufM74tFLwIAuNSyxZPzgC0yp/9pkfkGRyIiIiIiIqKCVKGKNaZs9JY6BipUsX7vc7i5ZU4UuX37NmrXrg1ra2vY2dnhyJEj2Y63t7eHQqGAgYEBXrx4obMvIuLdf4NbW2dmjouLy3PW/87ySk1NxaFDh/Ddd99h/PjxYr9Wq832+LflLVeu3DuvHRcXBxsbm7xGfm8sehEAoJlHHTw5fxsGAOwARAB4EBaPiOhkONiYSJyOiIiIiIiISgqVmVGe1tLSZ7du3QIA2NraAgA6duyIpUuXwsjICO7u7m89rkGDBti/fz8+//xzsW/v3r3vvJ6xsTGcnJwQGhr6nskz3zKp1WphZPR6Mf/ExEQcOJD9emv79+/XecRx7969KF++PBwdHXO8TmRkJJKTk1G9evX3zpxXLHoRAKC1Z2PsnHcdBnIlyiGz6AUAB8+GYVSvGlJGIyIiIiIiIpKcVqvFpUuXAADp6ekICgrCggULULNmTbRp0wZA5qL1PXr0QJcuXTB16lS4u7sjKSkJt2/fRkhICDZu3AgAmDlzJnr27ImPP/5YfHvjtm3bcpWjZcuWCAoKeu/7sbCwQOPGjbF48WLY2dnBwMAAixcvhoWFRZZZXQBw6tQpTJkyBZ06dcKJEyewbds2/PTTT+Ii9r///js8PDywadMmfPTRR+Jx165dAwC0atXqvTPnFReyJwCA0tgI6QZxAIBKb/TvPflQkjxERERERERE+iQlJQXNmzdH8+bN4eHhgZUrV2Lo0KEIDAzUWcNr79698PX1xerVq+Hl5YWRI0fC398fbdu2Fcd4e3tj7dq1OHnyJHr16gV/f/9s19HKTr9+/XD+/HkkJia+9z3t2LEDVapUwbBhwzBhwgT069dPp2D1pnXr1uH+/fvo3bs3tm3bhq+//hpjx44V9wuCAI1Gk+XxyKNHj6J169a5WrOsoMkEQRCK/KolmKurKwDg4cPiVyya0Hcp0h5bQgCwUxDwUiaDgUKGCP8PYW1hLHU8IiIiItIDAXe47ivlno+PD2Tht4rl30dE+iojIwNOTk5YsmTJWwtUBen06dNo3749rl69qrOQf26o1Wo4OTlh8eLFRZL1vzjTi0S1mjgDAGQAXP9d4E6tEfDb748lTEVERERERERErxgaGmL69OlYsWKF1FHeaceOHTAzM8OQIUMkuT7X9CJR++5NcH3PCQCAK4C//u3fe/IhPvYu+gXniIiIiADOLCIiIvovX19fJCQkICoqSlxEXx/J5XJs2rQJBgbSlJ9Y9CJRtVqVkKKJg0phCTsApjINkgQFTlx+hrjENFiaK6WOSERERERERFTqKZVKzJ49u0iu1a5dO+R3ZayhQ4cWcJq84eONpENhkQYg8xFHJ40GAJCh1uIAH3EkIiIiIiIiomKERS/SUbG6lbhdVW4kbvMtjkRERERERERUnLDoRToatXMTtx0AWBhnLmh//NJTJLxMlygVEREREREREVHesOhFOjp0bw6NNgNA5iOOFWXJAID0DC0OnuUjjkRERERERERUPLDoRTrMzE2QZhgjtsu/VIvbe0+GShGJiIiIiIiIiCjPWPSiLJzqWLzeVpjD2izzJZ/HLj5Bcqr6bYcREREREREREekNFr0oi66DWorbcgAVjVIBAKlpGgReey5RKiIiIiIiIiKi3GPRi7Jo3qE+kjVxYtsy9qW4fYjrehEREREREVEpM2/ePMhkMvHH2NgYbm5uWLp0KbRabYFcIy4uDjKZDFu2bHnn2Js3b8Lc3ByRkZFi35v5jIyMUKVKFUyYMAExMTE5nCn/WefNm4c7d+68c+z58+dha2uLhISEAs/xLix6URZyuRxm5V8/xuiiNYfSMPOrcuhcGARBkCoaERERERERkSRUKhUuXryIixcv4ujRo+jfvz+mT5+OpUuXFnmWWbNmYfjw4bCzs9PpHz9+PC5evAh/f38MHToUa9aswQcffFDg14+Li8P8+fNzVfRq2bIlatWqheXLlxd4jncxKPIrUrHQ1LMGLm6LAgAoZQq4Wslw9wXwNCIJN0Ni4F7VRuKEREREREREREVHLpejWbNmYrt9+/a4efMm/Pz8MH369CLL8fDhQxw8eBBBQUFZ9jk5OYkZ27Vrh+fPn2PDhg0IDw9HuXLliizjf40cORKTJ0/GrFmzYGhoWGTX5UwvylbvYZ2g1qaLbcvEOHH70NkwCRIRERERERER6Rdzc3NkZGTo9KWlpWHGjBlwdnaGUqmEm5sbduzYkeXYDRs2wMXFBSYmJvDw8EBISEiurrl161a4urqifv367xz7akxY2Ou/43Ob7+LFi/D09ESZMmVgbm6Opk2b4sSJE3j06BEqVaoEAOjfv7/4SOWjR4/emqNXr16Ii4vDkSNHcnWPBUWvZnodOXIES5YswZ07d5CQkIAKFSqgV69emDt3LiwsMt8oOHz4cPzyyy9Zjj169Ci6dOkittPT0zFz5kxs27YNiYmJaNGiBVatWoXq1avrHBccHIzx48fjwoULMDc3x0cffYQFCxbAyMiocG9Wz1lYmkOtioFBWlkAQNmXckCRue/QuTDMGPHu/7iIiIiIiIiI/kuT8BLpdx5KHQNGNV2hKGOWp2PU6sylgFJSUhAYGIh9+/ZhxowZOmMGDBiAc+fOYe7cuXBzc8ORI0cwdOhQWFlZwcvLCwBw6NAhjB49GsOHD8egQYMQFBSE/v375ypDQEAAWrRokauxjx8/hlwuh7Ozc57ynT9/Hh06dECzZs2wceNGWFpa4tq1awgLC0ObNm3g5+eHPn36YNGiRWjfvj0A5DiTrEyZMqhVqxZOnDiBnj175ip7QdCroldMTAyaNm2KCRMmwMbGBrdu3cK8efNw69Yt+Pv7i+NcXV2xfft2nWPd3Nx02hMmTMCuXbvw3XffoUKFCli4cCE8PDxw+/ZtsYAWGxuLDh06oGrVqvDz88OzZ88wadIkJCcnY9WqVYV/w3quSkN7PL2QuW2nMIWzrREeR6Xj0s0IRMamwM5KJW1AIiIiIiIiKnbS7zzE8x6fSh0D5Q/+BFUz91yPT0pKyvJo3sCBA3UebQwMDMSBAwdw/PhxeHp6AgA6deqE8PBwzJ07VywqLViwAK1bt8bmzZsBAJ07d0Zqaiq+/vrrHDMIgoBr166hV69e2e7XarVQq9VIS0tDYGAg1qxZgzFjxqBs2bJ5yjd16lRUqVIFp06dgkKROQPm1Xjg9QyyqlWr6jzymZO6devi8uXLuRpbUPSq6DV06FCddrt27aBUKjF69Gg8f/4c5cuXB5C5eFxOv9SnT59i48aNWL16NUaMGAEAaNy4MZycnLBu3TpMnToVALB27VokJCRg//79sLa2BpBZtR07dixmzJghXq+06vlhO/x04YzYttck4jGUEATg6Pkn+Kh7NQnTERERERERERUdlUqFM2cy/0ZOS0tDUFAQ5syZAx8fH2zatAkA4O/vD2tra3To0EGcFQZkFpZ8fX2h0WgAAEFBQVkWwO/Xr987i16xsbFIS0vLsoD9K9OmTcO0adPEdqtWrfDjjz+K7dzkS0tLw6VLl/DNN9+IBa+CYGtri/Dw8AI7X27o/ZpeNjaZC6anp6e/Y+Rr/v7+0Gq1OlMDra2t4enpqfP86NGjR9GxY0ex4AVkTvPTarU6M8tKK/fGNZCkjRbblrHJ4vahc1zXi4iIiIiIiEoPuVyORo0aoVGjRmjZsiUmTJiAOXPmYPPmzbh16xYAICoqCjExMTA0NNT5GTVqFNRqNcLDwxEZGQm1Wg17e3ud8zs4OLwzQ2pqKgBAqVRmu3/ixIm4evUqTp8+jVGjRuHcuXOYPXu2uD83+WJjY6HVagt8IpBSqURKSkqBnvNd9Gqm1ysajQYZGRm4c+cOvvrqK3h7e8PFxUXcHxISAgsLC6SkpKBOnTqYPXu2ztS+4OBg2Nvbw8rKSue8bm5u+Pnnn3XGvZoJ9oqlpSXKlSuH4ODgt+ZzdXV9674nT56gYsWKubxT/WflIkf6v/UtZ1jBwtQA8UlqHL/4BOkZGhgZFlzVl4iIiIiIiEo+o5quKH/wJ6ljwKjm2/+2z61XSy3dvn0btWvXhrW1Nezs7N66YLu9vT0UCgUMDAzw4sULnX0RERHvvN6rSTtxcXHZ7nd0dESjRo0AAG3btkVERAS+++47jB07FhUrVsxVvoyMDMjlcjx//vydefIiLi5OnNhUVPSy6OXs7Ixnz54BALp06aLzFoH69eujcePGqFWrFuLi4rBmzRr07t0be/bsQb9+/QBkTveztLTMcl4rKyvExMSI7dyOK81ad3fHydVPAGROC3Q11+CPJCAhKQPnbvyDDo0rSBuQiIiIiIiIihVFGbM8raWlz17N8LK1tQUAdOzYEUuXLoWRkRHc3d9+jw0aNMD+/fvx+eefi3179+595/WMjY3h5OSE0NDQXOVbtmwZjhw5gm+//RYrVqzIVT4jIyM0b94cW7duxRdffJHtI46vXv73auZZbjx69CjLywULm14WvY4cOYKkpCTcvn0bCxYsQI8ePXDixAkoFApMnDhRZ6y3tzdatGiBOXPmiEWvwvbw4dvfMpHTLLDiyHtwBxxbuQ6GCmMAQJm4OACZLwI4dDaMRS8iIiIiIiIqFbRaLS5dugQgcwmmoKAgLFiwADVr1kSbNm0AZK6N1aNHD3Tp0gVTp06Fu7u7WN8ICQnBxo0bAQAzZ85Ez5498fHHH4tvb9y2bVuucrRs2RJBQUG5Glu9enUMGjQIGzduxJw5c3Kdb/HixejQoQM6duyIsWPHwsrKCtevX4etrS1GjBiBsmXLwtLSEjt37kSlSpWgVCrh7u4OIyMjVKlSBc7Ozjh58qROlmvXruGLL77IVe6Copdrerm7u6N58+YYNWoUfvvtNwQGBmL//v3ZjpXL5ejbty/u3r0rPhtqZWWF+Pj4LGNjY2N11u/K7bjSzFilhNYsTmyXSzKAQiEDAOw//QiCIEiUjIiIiIiIiKjopKSkoHnz5mjevDk8PDywcuVKDB06FIGBgTpvddy7dy98fX2xevVqeHl5YeTIkfD390fbtm3FMd7e3li7di1OnjyJXr16wd/fH7t3785Vjn79+uH8+fNITEzM1fjZs2cjLS0NK1euzHW+Vq1a4fTp05DJZBg+fDj69OmD/fv3w9nZGUBmLWbz5s0IDQ2Fh4cHGjduLD4OqVarxQX7X7l+/ToiIyPRt2/fXGUuKDJBz6sWgiBAqVTiq6++0nkN6JuWLVuGqVOnIjk5GSqVCps2bcKoUaMQHR2ts65X3759ER0djdOnTwMA2rRpAxsbG52CWnx8PKysrLBp0yYMHz48z3lfzfTKaTZYcbPw8/UIO/u6fcXZBDceZy5qH/S/PmhQw1aiZERERFQaBNx59xonRKSffHx8IAu/VaL+PiKSWkZGBpycnLBkyRJ89NFHUsfJlSlTpiAoKAinTp0q0uvq5UyvN12+fBkZGRlvfWxQq9Viz549qFWrFlQqFQDA09MTcrkc+/btE8fFxsbC398fXbt2Ffu8vLwQEBCgswDcnj17IJfL4enpWTg3VAz1GNJGp22b+nq9M79TuXuOmIiIiIiIiIjen6GhIaZPn44VK1ZIHSVXEhISsHHjRsybN6/Ir61Xa3r16dMHjRo1gru7O1QqFf78808sW7YM7u7u6NWrFx4/foxhw4Zh8ODBqFKlCmJjY7FmzRpcu3ZNp8Dl6OiIUaNGYcqUKVAoFKhQoQIWLVoECwsLjBkzRhzn6+uLlStXolevXpgxYwaePXuGKVOmwNfXt8BfzVmcuTeugWTtfpjIM9+yUCbiJWQyYwgCsO9UKBaMbSxxQiIiIiIiIqLSw9fXFwkJCYiKihIX0ddXYWFh+Prrr8V1z4qSXhW9mjRpgt27d2Px4sXQarVwcXGBj48PJk+eDCMjI5ibm8PCwgILFizAixcvYGRkhEaNGuHo0aPo3LmzzrlWrFgBMzMzTJ8+HYmJiWjZsiUCAgJgYWEhjrGyssLJkycxfvx49OrVC+bm5hg1ahQWLlxY1Leu98o4Aup/31ZqLVijsZs1rtyNQfCjONx5GIuarlY5n4CIiIiIiIiICoRSqcTs2bOljpErtWvXRu3atSW5tt6v6VXclMQ1vQBg66pfcX7LC7EdVdsIfrfSAQBf+zbCrFENpIpGREREEuJ6W0SUE67pRURS0vs1vUg/9BzqAbU2XWwbPXkubu/jul5EREREREREpGdY9KJcsbA0R4by9QL2hjFGaOSW+dzwjfvRePg0QapoRERERERERERZsOhFueZS11rcVinKoL7j6yXh/AI524uIiIiIiIiI9AeLXpRrXgNb6rTlTx6L23zEkYiIiIiIiIj0CYtelGtN29ZFiiZObCeFxKF25cy3Nl66+QLPXiRJlIyIiIiIiIiISBeLXpRrcrkcqrIZYluZboMuTcqK7f18xJGIiIiIiIiI9ASLXpQnjT2qidsKuQHkz1+/evi33x9ndwgRERERERFRiXH06FF07doVdnZ2MDQ0hIODA7p164adO3dCq9UCANq1a4fu3bsX+LWHDx+O2rVrF/h5SyoWvShP+o/qArU2TWy/uBaGShXMAQCng54jNiHtbYcSERERERERFWszZsxA165dYWxsjFWrVuHkyZNYtWoVLC0tMXToUJw4caJQrz979mzs2LGjUK9Rkhi8ewjRaxaW5tCYxcEg2QEAIEuwQFevCvhpbzDUGgGHz4VhaNeqEqckIiIiIiIiKliHDx/GN998g7lz52LevHk6+/r374+JEyfC0NCwUDNUrly5QM6TlpYGQ0NDyOUley5Uyb47KhTurSuK24YKY5RJDBfbv55+JEEiIiIiIiIiosL13XffoVy5cpg1a1a2+5s0aYL69etnuy84OBiDBg1CxYoVYWJigpo1a2L58uXi45CvpKWlYdasWXB1dYVSqYSjoyOGDx8u7s/u8canT59i6NChsLW1hUqlQps2bRAUFKQzxsXFBePGjcPSpUvh7OwMlUqFmJiYfPwWihfO9KI8GzjGC/OO+UEuUwAAIq+FwNayIqLiUnHs4hOkpKqhMuZXi4iIiIiIiEoGtVqN8+fPo1+/fjAwyPvfu8+ePUP16tXxwQcfwNzcHDdu3MDcuXPx8uVLzJ07VxzXt29fnDp1CjNmzECzZs0QGRkJPz+/t543NjYWrVq1gpmZGVauXAkLCwusXLkSHTp0wIMHD2Bvby+O3bdvH6pWrYoVK1ZAoVDA1NQ0z/dR3LAyQXlWwckBqYZRMFFnPuKY/sIY3XpWxC+HHiApRY2TV5+he2tniVMSERERERGRvmr0oR/+iU6R7PplbVS4tq1PrsdHR0cjLS0NFStW1OkXBAEajUZsy+XybB8Z9PDwgIeHh3hMq1atkJycjFWrVolFrxMnTuDw4cPYsWMHBg8eLB775vZ//fDDD4iLi8OVK1fEApeHhweqVauGb7/9FkuXLhXHZmRk4OjRo6Wi2PUKi16UL1Ua2eL5pcxtY4U5bGQJ4r5fTz9i0YuIiIiIiIje6p/oFDx7kSR1jDyTyWQ67X379qF///5i+9NPP8WqVauyHJeamopvvvkG27dvR1hYGDIyMsR9L1++hJmZGU6ePAkTExMMGjQo13n8/f3Rvn17WFtbQ61WAwAUCgXatm2Lq1ev6oxt165dqSp4ASx6UT71H9URKy4Fiu3YP4JhYmyH5FQ1Dpx5DI1GC4WCS8YRERERERFRVmVtVMXq+jY2NlAqlXj69KlOv4eHh1hc8vb2fuvx06ZNw4YNGzB37lw0bNgQlpaW+O2337BgwQKkpqbCzMwM0dHRKFeuXJbCWk6ioqJw6dKlbBfQ/++i9w4ODrk+b0nBohflS816VZGE3TBF5vTJl4+Bzh0dsT/wESJjU3Hx5gu0qldW4pRERERERESkj/LyaKE+MDAwQMuWLXHy5EloNBooFJlrXFtZWaFRo0YAACMjo7cev2fPHowZMwbTpk0T+w4fPqwzxsbGBuHh4RAEIdeFL2tra3Tp0gVff/11ln1KpVKnnZdiWknBqTiUbxVqvZ4WaaKwgpuNILb3B4ZKEYmIiIiIiIioUEyaNAnPnz/HokWL8nxsSkqKTlFMo9Fg165dOmM6duyI5ORk/N///V+uz9uxY0fcuXMHbm5uaNSokc5PnTp18pyzpOFML8o37w/bYOv0169Bjf/rNhQKc2g0An49/QjfftasVFaSiYiIiIiIqOTp1q0bpk+fjjlz5uDGjRsYOHAgypUrh/j4eJw9exb//PMPzM3Nsz22U6dO2LBhA2rWrAlbW1usXr0aaWlpOmM6duyIrl27YsSIEfj777/RtGlTxMTEYO/evdi9e3e25500aRK2b9+Otm3bYuLEiXByckJkZCQuX76M8uXL4/PPPy/w30NxwplelG8tOzZEsjZGbMfdT0bbBuUAAA+fJeJ6cJRU0YiIiIiIiIgK3DfffINDhw4hJSUFY8eORYcOHTBy5EjcvHkTmzZtwsKFC7M9buXKlWjbti3Gjx+PkSNHok6dOpgxY0aWcfv27cOECROwbt06eHl5YdKkSTAzM3trHhsbG1y6dAn16tXDtGnT4Onpic8//xyPHj1C06ZNC+y+iyuZIAjCu4dRbrm6ugIAHj58KHGSojG+9xKkP7ECAAiCFi4+7pi58RYAYNyAWlg5taWU8YiIiKiQBdyJkDoCEekxHx8fyMJvlZq/j4hIv3CmF72X5l1qitsymRx4dB/GyswF/XYcD0FaukaqaERERERERERUirHoRe/Fe4gHMrSvn0P++8oT9GlfCQAQE5+Gg2ceSxWNiIiIiIiIiEoxFr3ovZiZm0CjihXbmlhTfNS1itjefPCeFLGIiIiIiIiIqJRj0YveW5WG9uK2UmGGjGcPUdHBFABw7OJThEclSxWNiIiIiIiIiEopFr3ovXUf0kan/fuB6xjWvRoAQKsVsO3wfSliEREREREREVEpZiB1ACr+6jeriWTtAZjIrQEA4cHJmLeoGhb8/AcAYMuh+5jyUV3IZDIpYxIREVEh6FjTQeoI+cY3TxIREZVsnOlFBcLcURC3VVpbqIRUtK5fFgBwNzQOV25HShWNiIiIiIiIiEohFr2oQDTzdBO35TI59v8SgI97VBf7Nh/ggvZEREREREREVHRY9KIC0XOoB9TadLH955lQ9POoBBPjzCdotx15wAXtiYiIiIiIiKjIsOhFBcLC0hwZxjFiOz1KBVOVAXx61wAAJKeq8dWGIKniEREREREREVEpw6IXFZhKdW3EbWOFOQKPXMLMEfVhbmoIANjwazDuP46TKB0RERERERERlSYselGB6Ta4lU47YN8V2FmpMOXDugAAjUbAzNVXpYhGRERERERERKUMi15UYBq1qoNkTZzYfno3EQDw+ZA6cLBRAQD2ngzFlVsvpIhHRERERERERKUIi15UYORyOUzKZohtZbo14mISYGZiiLk+DcX+aSsvQxAEKSISERERERERUSnBohcVqLqtKonbCrkhDuw4BQAY1asGqlQsAwA4HRSOYxeeSJKPiIiIiIiIiEoHFr2oQPX80ANaQSu2rwQEAwAMDeRYOLax2D977TXO9iIiIiIiIiKiQsOiFxWoCk4OSJFFie24sNcFsP4dXVGvWuYbHoPuRuHQ2bAiz0dEREREREREpQOLXlTg7CorxW1TuS0e3H0EAJDJZJg3+vXaXvPWB3G2FxEREREREREVCha9qMC18nLXaR/832lx27utM+pXz5ztdT04CgfPPC7KaERERERERERUSrDoRQWu28B2yNCmiu3bl56K25ztRURERERERERFgUUvKnDGKiU0qjixrY5RQat9vbZXjzbOaFDDFgDwx71oHPids72IiIiIiIiIqGCx6EWFolJdG3HbWGGOs/5XxTZnexERERERERFRYWPRiwqFZ7/mOu0T+67otLu3dkKjmnYAgBv3o3Hk/JMiy0ZEREREREREJR+LXlQomrWrhxRNvNgOuxWrs18mk2H2yPpie+2+O0WWjYiIiIiIiIhKPha9qFDI5XIo7dLEtmGaNRLjk3TGdGvlhIoOpgCAI+ef4GnEyyLNSEREREREREQlF4teVGjqtHQWtw3kRti57pDOfoVCjpE9awAAtFoBmw7cK9J8RERERERERFRysehFhabvx55Qa9PF9vnfsha1RnhXh1wuAwBs/DUYGo02yxgiIiIiIiIiorxi0YsKTQUnB8AqTmwbpdrjZpBu4atiWTN0bVkRAPAkIgnHLz4tyohEREREREREVEKx6EWFqtuwJuK2XCbHlm8PZRnj06uGuL1+/90iyUVEREREREREJRuLXlSoeg3tiGRttNiODNYiLTVdZ0zXlk4ob2cCADh0LgzPXugueE9ERERERERElFcselGhksvlqNTYXGyrFBb4308HdMYYGLxe0F6jEbCZC9oTERFRIQq4E4GAOxFSxyAiIqJCxqIXFTqf6X2g0WaI7TN+d7KMGdmzOmSZ69lj42/B0GqFoopHRERERERERCUQi15U6CpWKg/BMkZsG6Xa486NBzpjnMuZo3PzzAXtH4e/xOmg50WakYiIiIiIiIhKFha9qEh0+bCxuC2XybFp2YEsYz7uUU3c3nr4QZb9RERERERERES5xaIXFYm+wzyRrH092yvyDhD+9IXOmB6tnVHG1BAAsO9UKJJSMkBERERERERElB8selGRkMvlcGlkKraNFeaYM2K9zhiVsQEGdKoMAHiZnIFfTz8qyohEREREREREVIKw6EVFZvLS4UjWvJ7tJY+xx/9W6z7m+GHXquL2tiN8xJGIiIiIiIiI8odFLyoyFpbm6DWxvk6f/4ZgRL+IFdut6pWFS3lzAMCJy88QHpVcpBmJiIiIiIiIqGRg0YuKVN/hnSF3iBLbKoUlZo1YI7blchmGelUBAGi1AnYcCynyjERERERERERU/LHoRUXuq02+SNHEiW3tP7bYt+W42OYjjkRERERERET0vlj0oiJn52ANT58aOn37V12DVqsFAFRztkTT2vYAgD/vR+OvB9FFnpGIiIiIiIiIijcWvUgSQ8d6Q2P1Qmybwg4/L98rtj/qxtleRERERERERJR/LHqRZD5bOgAabYbY/n1XCNRqDQBgYKfKMDTI/HpuOnAPCS/TJclIRERERERERMWTXhW9jhw5grZt28LOzg5KpRKurq6YNGkS4uPjdcYdPHgQdevWhbGxMapVq4bNmzdnOVd6ejqmTJmCsmXLwtTUFJ06dcK9e/eyjAsODkanTp1gamqKsmXLYurUqUhPZ4GlKNSuXw2G5V9/tqYyW6xfshsAYGNpjEGelQEAMfFp+H7HTUkyEhEREREREVHxpFdFr5iYGDRt2hRr167F8ePHMWnSJGzduhX9+/cXx5w7dw69e/dG8+bNcfToUQwcOBAjR47E3r17dc41YcIEbNiwAYsWLYKfnx/S0tLg4eGhU0CLjY1Fhw4dkJ6eDj8/PyxatAjr16/HpEmTiuyeS7vPvhkEtfZ1kfHCvsfibK+5oxtCoZABAL7b/hei41IlyUhERERERERExY9MEARB6hA52bBhA0aPHo1nz56hfPny6Ny5M16+fInz58+LY4YMGYIbN27gzp07AICnT5/CxcUFq1evxujRowFkFtScnJwwZ84cTJ06FQDwzTffYOHChQgLC4O1tTUAYP369Rg7dizCwsJQvnz5POd1dXUFADx8+PC97rs0+bTnYqifWYvtWj1UmDD3QwDA6IVnsGF/MABg2rC6WDy+qSQZiYiIqOQIuBMhdQSiUsPHxwey8Fv8+4iIJKFXM72yY2NjAyDzccW0tDQEBgbqzPwCgEGDBuHu3bt49OgRAMDf3x9arVZnnLW1NTw9PXHkyBGx7+jRo+jYsaNY8AKAAQMGQKvVwt/fvxDvit40aclgndleV397ioz0zLW+Zo9sACPDzK/pj7tu4Z+oZEkyEhEREREREVHxopdFL41Gg9TUVFy/fh1fffUVvL294eLigr///hsZGRmoUaOGzng3NzcAmetzvfq/9vb2sLKyyjLu1ZhX4/57LktLS5QrV05nHBWuyjWcYeKSJLZN5DZYt+T/AAAVy5rhk341AQApaRp8s+WGFBGJiIiIiIiIqJjRy6KXs7MzVCoVGjZsiHLlymHHjh0AMtfgAjILU296VdyKiYkRx/13zKtxr8bkZdx/ubq6vvXnyZMneblV+tcXSz6AWpsmtoMCXk9//nJ4PZgYGwAA1u67g7B/XhZ5PiIiIiIiIiIqXvSy6HXkyBFcuHABGzZswN27d9GjRw9oNBqpY1EhcqnqCK1ZnNiWJVggOSkFAOBgY4IJg2oDANIztBi98Aw0Gq0UMYmIiIiIiIiomDCQOkB23N3dAQDNmzdH48aNUa9ePezfvx81a2Y+5vbmGxiB1zPAXq3NZWVllWXMq3Fvrt+V23H/ldMijK8Wsqe8q93KEff9M9fyMlQYw++XExg61hsAMOVDd/z8WzAiY1Nx/OJTzPjpKpZM4KL2RERERERERJQ9vZzp9SZ3d3cYGhoiJCQElStXhqGhYZb1tl61X63PVaNGDURERIjFsDfHvbmGV40aNbKcKz4+HuHh4VnW+qLCN8CnM7TC6xlc54/cEretLYzxf990hEIhAwAs3fondh4LKfKMRERERERERFQ86H3R6/Lly8jIyICrqyuUSiXat2+PvXv36ozZvXs33Nzc4OLiAgDw9PSEXC7Hvn37xDGxsbHw9/dH165dxT4vLy8EBAQgLi5O7NuzZw/kcjk8PT0L9b4oq4qVyiNVESm2k54ZQqt9XQRr16g8fpjUXGyP/Pp3/BEcVaQZiYiIiIiIiKh40KvHG/v06YNGjRrB3d0dKpUKf/75J5YtWwZ3d3f06tULADB79my0a9cOY8eOxYABAxAYGIgdO3Zg9+7d4nkcHR0xatQoTJkyBQqFAhUqVMCiRYtgYWGBMWPGiON8fX2xcuVK9OrVCzNmzMCzZ88wZcoU+Pr6onz58kV9+wTAyd0CUTcyt1UKCwQeuQSP7i3E/Z8OqIU/7kVj04F7SEnToOcXx3Hll94oa2siTWAiIiIiIiIi0kt6NdOrSZMm2LNnD4YMGYKePXti06ZN8PHxwdmzZ2FkZAQAaNWqFfz8/HDu3Dl07twZO3bswMaNG9G/f3+dc61YsQIjR47E9OnT0atXLxgaGiIgIAAWFhbiGCsrK5w8eRIGBgbo1asXpk+fjlGjRuG7774r0vum13p+1FanfWzXJZ22TCbD6umt0KyOPQDgSUQSuk48ioSX6UWWkYiIiIiIiIj0n0wQBEHqECXJq4Xsc1rsnnL2YYNvYCK3AQAkIRL/uzYzy5jwqGQ0G/4rwv55CQDwaFIBh3/oAqWRokizEhERERVnAXcipI5AJZyPjw9k4bf49xERSUKvZnoRAYBVpdeFK1PY4e5ff2cZU87WBMdXdYW1hRIAcPLKMwybGwitljVcIiIiIiIiImLRi/RQh94NdNr7NgVkO66GiyUO/9AFKmVmkWz3iYf4bPkFcPIiEREREREREbHoRXqn24C2SNO8FNv3r7x92n2zOg74v8UdoVDIAAArd9+Gz4IzUKu1bz2GiIiIiIiIiEo+Fr1I7xgaGcLQNllsG6XaIPpF7FvHd2/tjJ9nt4Uss+6Fn3+7h4FfBiA1TV3YUYmIiIiIiIhIT7HoRXqpUceq4rZCbojftp/Kcfyw7tWwa5EHDA0yv9J+gY/Q7bNjSEziWx2JiIiIiIiISiMWvUgv9f6oI7SCRmxf//3BO48Z0KkyDv3QBSbGBgCAU1efo43PQTx7kVRoOYmIiIiIiIhIP7HoRXrJvpwNUuTRYjvuiSaH0a95NnPEyTXdxLc63rgfjSbD9uOP4KhCyUlERERERERE+olFL9JbtpWU4rapzA5PQp/n6rhmdRxw/ueeqFTBHADwPDIZrX0O4OCZx4WSk4iIiIiIiIj0D4tepLeaeNTQaR/YfjrXx9ZwscTlLb3Q3N0BAJCUokavyf74+dfggoxIRERERERERHqKRS/SW90GtoNGmyG2b154lKfj7axUOLWmGwZ2cgUAaLUCRi04gw377xZkTCIiIiIiIiLSQyx6kd6ysDRHmmGM2E76J+9fV2OlAXYs9MDnQ+qIfaMXnsV6Pxa+iIiIiIiIiEoyFr1Ir5WtZipum8itcfevv/N8DrlchuWfN8MXQ93FvjGLzmLdvjsFkpGIiIiIiIiI9A+LXqTXWnZ212kf3X02X+eRyWRYNrEppnz4+ny+35zD1kP33ysfEREREREREeknFr1Ir3Xp2xoZ2lSxfefK03yfSyaTYcmEppj6UV2xb8TXv/OtjkREREREREQlEItepNeMVUqojePEdnqUElqtNt/nk8lkWDy+CcYNqAUA0GgEDPgyAGeuh79vVCIiIiIiIiLSIyx6kd6rWNNS3FYpLHD94u33Op9MJsOKyS0wuHNlAEBqmgY9Pj+GG/ei3uu8RERERERERKQ/WPQivdeuRwOdtv++i+99Trlchi3z2qFLi4oAgISkDHT69Agu33rx3ucmIiIiIiIiIumx6EV6r3235kjTJIvtkOsRBXJeI0MF9i7piObuDgCAqLhUdPA9hMPnwgrk/EREREREREQkHRa9SO8ZGCgA80SxrY03Q1pqeoGc21RliKM/eqFdw3IAgORUNXp+cRwbfw0ukPMTERERERERkTRY9KJioWpDB3FbqTDF//18tMDObWFmhGMru2JAJ1cAmYvb+yw4g1mrr0KrFQrsOkRERERERERUdFj0omJh6Lhu0Aoasf37rzcL9PxKIwV2LvTAZ4Nri30LN/2BHp8fQ1xiWoFei4iIiIiIiIgKH4teVCw4V66ANGWk2NZEmSMxPqlAryGXy/D9Fy3w/aTmkMtlAIAj55+gybBfcedhbIFei4iIiIiIiIgKF4teVGzUbVdR3DZSqLB99cFCuc5nQ+rg+EovWFsoAQAPwuLRdPiv2HkspFCuR0REREREREQFj0UvKjY+mtgTau3rBewvH3tQaNfq2NQR17b2Rr1qNgCAl8kZGDLrFEbMP42klIxCuy4RERERERERFQwWvajYsHOwhtbs9WOG8kQrREbEFNr1KlUog/ObeuLDrlXFvs0H76PhUD/cuBdVaNclIiIiIiIiovcnEwSBr6crQK6umW8AfPjwocRJSqY1i3bihl+i2K7e2QiTFg4v9OtuPXQfY5ecQ1KKGgBgZCjH8s+a4dMBtSCTyQr9+kREREQlTcCdCKkjUBHw8fGBLPwW/z4iIklwphcVK0M/9UaGJlVs3wgMK5LrftS9Gq7/rw/qV8983DE9Q4vxyy6g92R/RMelvuNoIiIiIiIiIipqLHpRsWJuYQq5dYLYVqbZ4Uno8yK5djVnS1zc3AufDa4t9v32+2PU+2AfzlwPL5IMRERERERERJQ7LHpRsdO6Zy1xWy5TYOuPh4rs2kojBb7/ogUOft8ZNv++3fFpRBLa+x7C/PVB0Gi0RZaFiIiIiIiIiN6ORS8qdgb6dEWaJkls3z0bCa22aItN3Vs748+d/dCuYTkAgFYrYN76IHT45DCeRrws0ixERERERERElBWLXlTsGKuUMK34eh0tU9hh3y/+RZ6jgr0pAlZ3w9e+jSCXZy5mf+Z6OOoO2YdfDt2HVst3RBARERERERFJhUUvKpZGzegJrfB6dtehn69IkkOhkGPWqAb4fX0PVHQwBQDExKdh+LzTaDjUDyevPJMkFxEREREREVFpx6IXFUv1m9WE2jRSbCtT7HHp9xuS5WlVryxu7OiLfh6VxL4b96PRcexhdJ1wFLdCYiTLRkRERERERFQasehFxVbvT1qI2zKZHFuWHJEwDWBtYYw9Szrh5JpuqF/dRuw/euEJ6g7ZB58FZxAelSxhQiIiIiIiIqLSg0UvKra8B3sgSfZCbGf8UwZPQp9LmChTh8YVcG1bH2z7qr34yKNWK2Djr8Go0msXvtoQhLR0jcQpiYiIiIiIiEo2Fr2oWGvRy1XcNpAb4cc5uyRM85pcLsPQrlVxb99ALB7XBGVMDQEAyalqzF0XhLqD9+LsH+ESpyQiIiIiIiIquVj0omLNZ0p/JGtixfaLWwJeJurPI4QqYwNMG14PIb8OwviBtWCgyHzL473H8WjjcxBjFp5BXGKaxCmJiIiIiIiISh4WvahYMzQyROXmZmLbWGGOVfO3S5goe3ZWKvw4pSWub++LprXtxf71+4NRs/8e+J0KlTAdERERERERUcnDohcVe+PnDUG65vXsrtunopGRniFhorerU8Ua53/2xo+TW8DMJPORx/CoZPSdegK9J/vj2YskiRMSERERERERlQwselGxZ2NvBcuqr4tcJnJrbPx2r4SJcqZQyDF+UG3c/r/+6NbKSez/9fQjuPX/P2w/+kDCdEREREREREQlA4teVCKMXzAIam262D7v9ze0Wq2Eid7NqawZDn7fGbsWecDeWgUASEzKwNDZgfh8+QWo1fqdn4iIiIiIiEifsehFJYJrtYowKpcgtk1hj90bj0iYKHdkMhkGelbG3T398VG3qmL/DztvodOnhxEZmyJhOiIiIiIiIqLii0UvKjFGz+4FraAR20c3/yFhmryxtjDGL/PbY+2XrWBokPmf5emgcDT6cD/+ehAtcToiIiIiIiKi4odFLyox6jerCa1FlNhWZTjg+P6zEibKuzF9ayJwbXeUtcl83DHsn5doNeoA/C89lTgZERERERERUfHCoheVKEMnd9Jp7/r+tDRB3kPLemUR9L8+aFLLDkDmOl9dJx7Fz78GS5yMiIiIiIiIqPhg0YtKlPZdmyFV+Y/YNkp2gG/XRUhOKl5rY5W3M0Xguh7o1c4FAKDRCBi14Axmrb4KQRCkDUdERERERERUDLDoRSVOL9/mOm3hhS3GtP8WD+4+kiZQPpkYG2Dvko74bHBtsW/hpj8wdHYg0tI1ORxJRERERERERAZSByAqaL0/7ISgMyvx4rohZLLMuq6J1gELhuyDkW0KzKyUsHIwQ8PWNdBtQHuJ0+ZMoZDj+y9aoFKFMvhs+QUIArDjWAievkjC/mWdYG1hLHVEIiIiIiIiIr3EmV5UIi3YMB4thzkgXZMs9hkrzCGPtUfyQws8u6jAgaUPsGDiWglT5t6EQbWxf5knVEoFAODM9XC0HHkAoc8SJE5GREREREREpJ9Y9KISa9iE3vh0lQeStFFvHRN6NgPXL94qwlT517OdC06v6wF768w3OwY/ikOjj/bj2IUnEicjIiIiIiIi0j8ygatiFyhXV1cAwMOHDyVOQq9Ev4jFwgk/48XfqZCrjWAkM4VCbijuT1ZE4JeLMyGXF48acOizBHSdeAzBj+IAADIZMGdUA8we1QAKRfG4ByIiIqLiKOBOhNQRih0fHx/Iwm/x7yMikgSLXgWMRS/9p1Zr8HGLRTDROoh9Lm1l+HK5j4Sp8iYuMQ3D5p7GgTOPxT7PZo7YsaADbCy5zhcRERFRYWDRK+9Y9CIiKXFaCJU6BgYKjP/WG2ptuth3/1Qy7v71t4Sp8sbSXIn933pi8bgmkMtlAAD/S0/R7ONfcf9xnLThiIiIiIiIiPRAnoteycnJ+O233zB16lR0794dzZo1Q/PmzdGjRw9MnToVv/32G5KSkgojK1GBadKmLso20IptI4UKiz/ZDq1Wm8NR+kUul2Ha8HoIWN1NXOcr5EkCmo/4DWeuh0ucjoiIiIiIiEhauS563bx5E8OHD0fZsmXRu3dv/PTTTwgJCYFMJoMgCLh//z5WrVqF3r17o2zZshg+fDhu3rxZmNmJ3sucVb5IwguxbZxWFqsX7pQwUf60b1QeV7f2Rp0q1gCAmPg0dBx7GP878kDiZERERERERETSyVXRa+DAgahfvz6Cg4Mxb948/Pnnn0hISEBwcDAuXryIS5cu4d69e0hMTMSff/6JefPm4d69e6hfvz4GDx5c2PdAlC9KYyP4LOgEjVYt9l3xe47oF7ESpsofp7JmOLfRG52bOwIAMtRafDgnEN9u+1PiZERERERERETSyFXRSy6X49q1a7h06RImTZqEOnXqQKFQZBmnUChQp04dfPHFF7h48SKuXbtW4IGJClLbLk1hVuX147gqhQXmf7JBwkT5V8bMCIe+74IxfdzEvikrLmPO2mvg+yqIiIiIiIiotMlV0Wvnzp2oV69enk9er1497NxZ/B4Xo9JlzurRSNHEi+3kUDNcDPxDwkT5Z2Agx5ovW2HBJ43Evq83Xsek7y6y8EVERERERESlCt/eSKWeta0FmvWrILYVcgOs+fJQsVrU/k0ymQwzRzbAisktxL4fdt7C6IVnodEUz3siIiIiIiIiyiuD9zk4LCwMDx8+RGxsbLazSPr06fM+pycqMr5fDsLwQwuhynAAAKjUDlizaBc+nTVE4mT5N2FQbZipDOCz8Cy0WgEbfw1GYlI6tn3dAYYGrHcTERERERFRyZavoldYWBhGjBiBwMBAAMi24CWTyaDRaN4vHVERkcvlGLu4BzZ+fgEKeeZ/Fpf3PUfPof/A0aWsxOnyb0TPGjAzMcQHs05BrRGw+8RDJKWqsWdxRxgr36vmTURERERERKTX8vVX77Bhw3Dx4kVMnz4dTZs2hYWFRUHnIipyzdrWw05Xf6Q+sgQAqBRlMPOD9fj595kwMMj64obiYkCnyjBVGaLv1BNIS9fg0NkwdPvsGH5b3hlmJoZSxyMiIiIiIiIqFDIhH6tbq1QqTJ06FfPnzy+MTMWaq6srAODhw4cSJ6H8iImKx0TPNTCRW4t91nWS8c3mz6QLVUACrz1Hj8+PISlFDQBoUMMWe5d0RKUKZSRORkRERFQ8BNyJkDpCsePj4wNZ+C3+fUREksjXwj6Ojo6wsrIq6CzYs2cPevbsCUdHR5iamqJevXrYtGmTzuOT7dq1g0wmy/ITHBysc674+HiMHDkS1tbWMDc3R79+/RAeHp7lmhcuXEDz5s2hUqng7OyMJUuW8C13pZi1rQVGLGgHtTZd7Iv6S4k9m49JmKpgtG9UHgGru8HS3AgAcD04Cg2G+uHQ2ccSJyMiIiIiIiIqePkqek2ePBk///wzkpOTCzTMd999BxMTEyxfvhwHDx6El5cXfHx88NVXX+mMa9myJS5evKjz4+LiojNm4MCB8Pf3x9q1a7F9+3bcu3cPXl5eUKvV4piQkBB07twZ5cqVw6FDh/DZZ59hzpw5WL58eYHeFxUv7bs2Q7WOKrEtlylw6Mfb+Du4+BeHmtVxwNkN3qhSMXN2V1xiOnp8fhwzfroCtZpvdiQiIiIiIqKSI1+PNwLA6tWrsXDhQvTr1w+Ojo5QKHTXPJLJZPj888/zdM6oqCjY2trq9I0ePRq7d+9GbGws5HI52rVrBzMzMxw6dOit57l48SJatGiB48ePw9PTEwBw7949uLm5YdeuXRgwYAAAYMyYMTh+/Dju378PI6PM2S8zZszAmjVr8M8//0CpVOYpP8DHG0sSn04LII+1F9tJeIElfj6o4OQgYaqCEf8yHSPmn4Zf4COxr2lte2ye2xZulQp+FicRERFRScDHG/OOjzcSkZTyVfS6desWunfvjrCwsLefuIDe3rhmzRqMHTsWCQkJMDc3z1XRa86cOVi5ciViYmIgk8nE/gYNGsDd3R1btmwBADg5OaFPnz744YcfxDF//fUX6tati8DAQLRr1y7PeVn0KjniYhIwruMqmMpfF2KThEgs/L/hcK5cQcJkBUMQBHy//SamrrwMjSbznwGlkQLzRzfEF0PdYWCQr4mgRERERCUWi155x6IXEUkpX3/Vjh49GvHx8Vi3bh1u3LiB0NDQLD8F9Y/auXPnUKFCBZibm4t9v//+O0xNTWFsbIy2bdvizJkzOscEBwejevXqOgUvAHBzcxPX/kpKSsKTJ09Qo0YNnTE1atTIdo2wN7m6ur7158mTJ+97y6QnLK3LYMIP3ZCqeSn2mcrsMLP/LyXiUUeZTIZJQ91xdoM3qjllvoE1LV2D6auuoMWI33D19guJExIRERERERHlX76KXjdu3MCMGTPg4+MDd3d3ODs7Z/vzvs6dO4ddu3Zh8uTJYl/btm2xYsUKHDt2DL/88guSk5PRsWNHXLx4URwTGxsLS0vLLOezsrJCTEwMACAuLg4AsowzMjKCiYmJOI5KtyZt6mLM8nZI1SSIfaZyW8wbshN3bjyQMFnBae7ugBs7+mLyh+54VSe+eicSTYb9iuHzTiM8qmDX7iMiIiIiIiIqCgb5OahSpUoFnSOLp0+fYuDAgWjfvj0mTJgg9s+fP19nXPfu3VGrVi18/fXXOHLkSKHnAnJ+dPHV441UcrTo0ABGqwzx47hjUCkyZ0SZyK2x+ONf4bvcAy06NJA44ftTGRtg2cRm6NO+EkZ89TuCH8UBAH45dB97Tz7EjI/rY9IHdWCszNc/GURERERERERFLl8zvebPn4+ffvqp0B7li4uLg5eXF2xsbLBv3z7I5W+PaWpqim7duiEoKEjss7KyQnx8fJaxsbGxsLa2BvB6htd/x6WnpyM5OVkcRwQAjVrWweT1PZCsiRX7VAoLrP/idxzcdUrCZAWrubsD/trVDz980RyW5pkvd0hKUWPm6qtw678H+04+RD7ffUFERERERERUpPI1bePMmTOwtLRE9erV0bFjR1SsWDHbtzeuWLEiz+dOSUlB9+7dER8fj4sXL8LCwiLP56hRowYCAgIgCILOul7BwcGoU6cOgMxiWcWKFbOs3XXv3j0IgpBlrS8i98Y1MGurEb4etktc3F6pMMWvS28j5kU8hk3oLXHCgmFoIMfEwXXwgVdVzFl7Dev87kKrFfDoeSL6TQtA2wbl8OOUFnCvaiN1VCIiIiIiIqK3ytfbG3OaeSWeOB9vb1Sr1ejduzcuXLiAs2fPombNmu88JikpCTVr1kSdOnXENzpevHgRLVq0wIkTJ9CxY0cAwP3791GjRg3s2rULAwYMAACMGTMGJ06cwL1792BoaAgAmDVrFn766SdERETAyMgoT/kBvr2xNHgWFoHp/dbDROsg9mm0GfhgQUO079pMwmSF42ZIDD7/7iJOXnkm9ikUMnw2uA7mjW4IMxNDCdMRERERFR2+vTHv+PZGIpJSvopehWX06NHYsGEDli9fjhYtWujsq1+/Pq5cuYJly5ahd+/ecHFxwfPnz7F8+XLcvn0bZ8+eRZMmTcTxXbp0wZ07d7B8+XIYGxtj5syZkMvluHbtGgwMMie4hYSEoF69eujSpQvGjh2LmzdvYurUqVi4cKHO4vl5waJX6RAfl4gJ3b6HcVpZsS9N9Q+2nJ0jYarCIwgCDvz+GF/8cAl/P329qH9FB1OsnNISPdu5SBeOiIiIqIiw6JV3LHoRkZT0qujl4uKCx48fZ7svNDQUarUa48aNw59//ono6GiYmpqiRYsWmDt3rk7BC8hcq2vSpEnw8/ODWq2Gp6cnVq5cifLly+uMu3DhAiZNmoQbN27Azs4On376KaZNm6bzWGResOhVeqSlpmNUuyUwUb+e8TVwfh106NZcwlSFKy1dg2Vb/8SCTX8gLf31TM6ebZ3x45SWcCprJmE6IiIiosLFolfesehFRFLKVdErOTkZJiYm+brA+xxbHLHoVboc2XMavy25L7bTTCKw5cxsCRMVjZAn8fh0yXn4X3oq9pkYG2D+mIaYOLgODA3y9Y4MIiIioiLDAlbRYNGLiKSUq79MK1asiK+++grh4eG5PvGzZ88wZ84cODk55Tsckb7r2r8dUoz+EdvKZAcEHrkkYaKiUaWiBY6t9MKuRR4oa6MCACSnqjFlxWU0+tAPF//i/xNJRERERERE0spV0WvNmjXYtWsXKlasiLZt2+Lrr7/G4cOHcefOHYSHh+P58+e4ffs2Dh06hHnz5qFVq1ZwdnbGnj17sHr16sK+ByJJ9RvfUqe9dckJiZIULZlMhoGelXF37wB82r8mXj0R/NeDGLQY8RvGLDyD2IQ0aUMSERERERFRqZXrNb20Wi0OHDiALVu24NixY0hPT8+y7pUgCDAyMoKnpydGjBgBb2/vXL3psSTh442l00fNv4YqI3NtL0HQYuiihmjTubHEqYrW1dsvMGbRWfxxL1rss7MyxoovWmBwlyoSJiMiIiLKio83Fg0+3khEUsrXQvZpaWkICgpCcHAwoqMz/8C1sbFBjRo10LBhQyiVygIPWlyw6FU6/fq/ABz94fVnnm4Wgc2nS/7aXv+lVmvx057bmLXmGl4mZ4j9H3atip+mtYS5qZGE6YiIiIheY9GraLDoRURS0qu3N5YELHqVXh82+1p8k6MgaOGzogUat3KXOJU0nr1IwsRvL2DfqVCxr6qTBXYt8kCDGrYSJiMiIiLKxKJX0WDRi4ikVLqePSQqRL18m4jbMpkcm5celjCNtCrYm2Lv0k7YsaADzE0NAQAPwuLR/ONfsWr3LbDWTkRERERERIWNRS+iAtL7o05IQqTYTn1iihfh0TkcUfIN7lIFf2zvi0Y17QAA6RlajF92AcPmnkZyqlridERERERERFSSsehFVEDkcjkadK4gtg0Vxlg1f6eEifRDZccyOP+zN74Y+vpRz21HHqDliN8Q+ixBwmRERERERERUkrHoRVSAfGcMRKomUWyHXk5CRnpGDkeUDkaGCnz7WTPsWdwRpioDAMCN+9Fo+OF+HL/4ROJ0REREREREVBKx6EVUgExMVbCvJXvdVljhlx9/lS6QnunX0RVXfumNak4WAIDYhDR4TTiKRZv+4DpfREREREREVKBY9CIqYJ/M6Q+N9vXsrt/3BkuYRv/UdLXCla294d3GGQAgCMDM1VfRd+oJJLxMlzgdERERERERlRT5LnqFhYXB19cX1atXh7W1Nc6cOQMAiIqKwoQJE/DHH38UWEii4sS1WkXAJlZsm6gd8PuxyxIm0j8WZkbY/60nvvZtBNm/E+P2Bz5Ck2H7cTc0NueDiYiIiIiIiHIhX0WvO3fuoH79+ti9ezcqVaqE+Ph4qNWZb2KztbXFuXPnsGrVqgINSlScDBrfXqf98/zjiImKlyiNfpLLZZg1qgEO/9AFluZGAIB7j+PRZNiv8DsVKnE6IiIiIiIiKu7yVfSaOnUqLC0tcf/+ffzvf//LshZPt27dcPbs2QIJSFQcdfRuiWR5hNhWZZTFhM4/4Y9LdyRMpZ+8Wjrh2rY+cK9qDQB4mZyBvlNP4MtVV6DRaCVOR0RERERERMVVvopeZ86cwSeffAI7OzvIZLIs+52cnPDs2bP3DkdUnPX7rLnO2l6mMlus+MQf29cckDCVfqrsWAYXNvXEkC5VxL7FW27Aa8JRRMWlSpiMiIiIiIiIiqt8Fb20Wi1MTEzeuj8yMhJKpTLfoYhKgp5DOqLH5OpI1SSKfUqFCU5vfI5Fk9ZLmEw/maoM8b+v2+OHL5pDocgspp+4/AwNPtiHK7deSJyOiIiIiIiIipt8Fb0aNGiAw4cPZ7tPrVZj165daNas2XsFIyoJeg7piBlbeyNJ9rpoI5fJ8fgMMH34D9Bq+fjem2QyGSYOroOTq7vBwUYFAHgSkYRWow5gzd47WR6lJiIiIiIiInqbfBW9vvzySxw7dgyffPIJbt26BQCIiIhAQEAAPD09cffuXUyfPr1AgxIVV9XruGLtqUkQbCJ1+mNvmWBCn6UsfGWjbcPyuP6/PmhZ1wEAkKHWYuzicxj51e9Iz9BInI6IiIiIiIiKg3wVvby8vLBlyxbs3r0bHTp0AAAMHToUnp6euH79OrZu3Yo2bdoUaFCi4szM3ARrj36JMjVe6vRnPLXG6E6LEBeTkOWYgAPnsX3NAcTHJWbZVxqUtzNF4Loe+GxwbbFv88H78Pz0CKK5zhcRERERERG9g0x4j+eFkpKS4O/vj5CQEGi1WlSuXBmdO3eGubl5QWYsVlxdXQEADx8+lDgJ6auvxq/B0wsyyGSva87J2hh8MKsFuvRpg6vn/sKq6b/COLUsACBDmwpYxKNxpyoYMrY7LCxL339fu/3/xvD5p5GaljnLq6qTBQ593xnVnC2lDUZERETFVsCdiHcPovfm4+MDWfgt/n1ERJJ4r6IXZcWiF+XGinnbcOvgS8hlCrFPK2igNo2C4qU1FHLDbI9L0SRg0IxG6Nq/XREl1R9Xbr2A9xfHERGdAgCwKqOE39JOaNeovMTJiIiIqDhi0atosOhFRFLKVdErLCwsXyd3cnLK13HFGYtelFu7NhzG0dV3Yawok6fjUjUv8fk6L9Rr4lZIyfTX4/BE9Pj8OG6GxAAADA3kWDejNT72ri5xMiIiIipuWPQqGix6EZGUclX0ksvlkMlkeT65RlP6Fpxm0Yvy4umjfzB72AYYJTlk2ZesiIBbSwfcv/oPFEnWMJAbifuStNFYdmAkyjnaF2VcvZDwMh2DZpzE0QtPxL7pw+th4djGkMvz/u8UERERlU4sehUNFr2ISEq5Knpt2bJFp+il1WqxYsUKPH78GB988AGqV8+cZREcHIwdO3bAxcUFEyZMwMcff1x4yfUUi16UV1qtFj/M3oqbR+JhpFAhWROHFv0rYsz0gZDLM9f9+udZJCb3XA9T2InHJRtEYEPgVBirlFJFl4xarcWk7y9i5e7bYl/fDpWw7av2UBkbSJiMiIiIigsWvYoGi15EJKV8rem1cOFCbNu2DefPn4eNjY3OvsjISLRq1QrDhw/Hl19+WWBBiwsWvSi/IiNicPXMX2jXtSlMTFVZ9j+4+whfD9kDlcJC7NNYvMD3fp/D3MK0KKPqjVW7b2Hi8ovQajP/GWvfqDx+W+4Jc1OjdxxJRERElD8sluUNi15EJCX5u4dktXbtWowePTpLwQsA7Ozs4OPjgzVr1rx3OKLSxM7BGl37t8u24AUAVd1cMPKbNkjXpIh9inh7jG23EtvXHCiqmHpl3MDaOPR9Z5iZZC78H3jtOTw+OYzouFSJkxEREREREZHU8vUcUHR0NJKTk9+6Pzk5GdHR0fkORUTZa9ulKcL+/gdnNj0X3/xoorDGmZ//wcndX8O1nj2MlAZQqozg6GIP7yEdYGiU/ZsgSwqvlk44ubobukw4itiENFy9E4l2Yw7C/6duKGdrInU8IiIiIiIikki+Zno1a9YMP/zwA4KCgrLsu3btGlasWIGmTZu+dzgiyurDT3ui6WBbpGoSdfoNXzrgyTkZ/j6pwZ1DKfBf9Rgjm36PLz/+AY8ePJUobdFoUtseZ9b3QFmbzFlyt/6ORRufAwiPentxnoiIiIiIiEq2fK3pdefOHbRr1w7R0dFo1qwZqlatCgB48OABLl26BGtra5w+fRq1atUq8MD6jmt6UVEJf/oC80dvhDbCGjJZzvVrjTYDCoc4LN05ARaW5kWUsOj9/TQBHccexqPnmQXBWq5W+H19D9hYGkucjIiIiEoKrumVN1zTi4iklK+ZXjVr1sTNmzcxYcIEREdHY/fu3di9ezeio6MxceJE3Lx5s1QWvIiKUjlHe6w9MgM9plRDkuxFjmMVckMg0g5f9F9RROmkUdmxDM6s7wHncmYAgNsPY9FlwlEkvEyXOBkREREREREVtXzN9KK340wvkkp8XCIS45KQlJiMmKh4HNj6O57dSIdKYakzrl4fc3wyY7A0IYvI308T0HrU68cb2zQoh6M/esHEOF/LGBIRERGJONMrbzjTi4iklK+ZXkSkfywszeHoUhbV67iiefv6+GbzZ/j58ueo2V0FraAVx13e8w/u3w6VMGnhq+xYBid+6gobCyUA4Mz1cHhPOo7EJM74IiIiIiIiKi3yNdNrxIgR7z6xTIaff/45X6GKM870In30Wf+lSAm1FNspRv9gy7lZkMtLdt076G4k2vseQmJSBgCgSS07HFnhxTW+iIiIKN840ytvONOLiKSUr6KXi4sLZDKZTp9Go0F4eDg0Gg3s7OxgampaKv9hY9GL9FFyUgpGt/kOpjI7sc+xhRazf/SVMFXRuHQzAl4TjiIuMXOWV01XK/iv6ooK9qYSJyMiIqLiiEWvvGHRi4iklK9pHo8ePUJoaKjOT1hYGJKTk/Hjjz/C3NwcJ0+eLOisRJRPJqYqjFncGWrt68f7Hp1T46+rwRKmKhrN6jjgzAZvlLVRAQDuPIxFq1EHcP9xnLTBiIiIiIiIqFAV6LNNhoaGGDduHDw9PTFu3LiCPDURvafWnRrBsenrGZoGciP8NGefhImKTp0q1jj/c0+4VjAHADx6nohmH/+GU1efSZyMiIiIiIiICkuhLOhTt25dnDlzpjBOTUTvYfZKXyThhdjWRFjh1h/3JUxUdFwdy+Dczz3hXtUaABCbkIbO445gw/67EicjIiIiIiKiwlAoRa8TJ07AxMSkME5NRO/BwECB9oNriG2F3AA/zd4rYaKiVc7WBOc2eqNbKycAgFojYPTCs5j03UVoNNp3HE1ERERERETFiUF+Dvrqq6+y7Y+Li8OZM2dw/fp1TJ8+/b2CEVHh+PjzPgjc8Y24qH3Gcwvcu/kQ1eu4SpysaJibGuG35Z6YsuIyvt9xEwDw/Y6beBLxEtu+ag9jZb7+WSQiIiIiIiI9k6+/7ubNm5dtv5WVFSpXroy1a9fCx8fnfXIRUSGRy+VoPaAKru+JBwAo5Ib4ceZu/HTgS4mTFR2FQo7vJjVHDRdLjF1yDhqNgL0nQxEVl4pfl3eGhZmR1BGJiIiIiIjoPeXr8UatVpvtT3R0NK5cuYLRo0dDJpO9+0REJImRX/RDkhAltlOfmuPB3UfSBZLI6D5uOPhdZ5gYZ9b/TweFo43PATyPTJI4GREREREREb2vfBW9zpw5g8jIyLfuj4qK4kL2RHrMwECB5r1dXrflRvhxxm7pAknIq6UTAtd2h62lMQDgrwcxaDXqAMKjkiVORkRERERERO8jX0Wv9u3b48SJE2/df/LkSbRv3z7foYio8I2ZPhBJ2mixnfzYpFTO9gKAJrXtcf5nb7iUNwcAhD5LhNeEo4h/mS5xMiIiIiIiIsqvfBW9BEHIcX9aWhoUCkW+AhFR0TAwUKCxt+PrtlyJ5V/skDCRtKo5W+LcRm84lzMDAPx5Pxq9vjiOtHSNxMmIiIiIiIgoP3K9kH1YWBgePXoktoODg7N9hDEuLg7r1q2Ds7NzgQQkosLz6awhGH5wCUxltgAATYQVrp2/iUYt60icTBoV7E1xfGVXtBz5G6Lj03A6KBxDZ5/CrkUeUCjy9b8REBERERERkURkwrumbf1r/vz5mD9//jsXqBcEAQqFAuvWrcOIESMKJGRx4urqCgB4+PChxEmIcmfzD/tw6X+vH3PMMI/ApsDZEiaS3uVbL9DB9xCSU9UAgKFeVbB+ZhuojPP1wlsiIiIqQQLuREgdoVjx8fGBLPwW/z4iIknkuuh19+5d3LlzB4IgYMCAAZgwYQJat26tezKZDKampqhXrx4cHBwKJbC+Y9GLihutVothzRbCRPv6v9n+c2qho3dLCVNJ7+j5MHhPOg61JvOfyAY1bOG3rBOcy5lLnIyIiIikxKJX3rDoRURSynXR602//PIL2rRpg0qVKhVGpmKNRS8qjvZvO4FjK0LFdorRP9h6YY6EifTDvpMP8dHc0+KMLxsLJXYt8kDHpo7vOJKIiIhKKha98oZFLyKSUr4WqRk2bBgLXkQlSO8POyFV+Y/YVqWXxZ7NxyRMpB/6erji0pZeqOxYBgAQHZ+GzuOPYuWuWxInIyIiIiIionfJ1UyvESNGQCaTYf369VAoFLlaq0smk+Hnn38ukJDFCWd6UXH1+7HL2D7zD8hkmbXwZE0c5u8eDNdqFSVOJr24xDQMnR2Iw+fCxL5JH9TBsonNIJfnvM4hERERkdSknJ3GmV5EJKVcFb1cXFwgl8tx7949GBoawsXF5Z0L2stkslL5DxuLXlScjeq4AIo4e7GdhBdY5T8BltZlJEylH7RaAbPXXMWizTfEvn4elbDtq/YwVnKBeyIiItJfLHoRUWmVrzW96O1Y9KLi7Omjf/Blny0wkVuLfanG/2DjqS9haGQoYTL9sd7vLsYuOQfNvwvct6zrgIPfd4FVGaXEyYiIiIiyx6IXEZVW+Sp6hYWFwc7ODiqVKtv9KSkpiIyMhJOT03sHLG5Y9KLi7vrFW/hxrD+UCjOxL80kApZljaFO10CrESCTAXIDORQKGZQmhmjWsTa6D2yXpTCWkZ6BU4cv4fyxPxF2JwbqFDnKlFVg/KIBcHOvXNS3VmCOnAvDgC8DkJSSucB9/eo28P+pG2wtjSVORkRERJQVi15EVFrlq+ilUCiwbds2DBkyJNv9u3fvxpAhQ6DRaN47YHHDoheVBAd3ncKvS+/AQG6U62PSNMmQWybCwt4Y8RGpSH8ph5HWHIbyrIUgtTYdKqeXmLL8QzhXrlCQ0YvM9eAodBl/BJGxqQCAWq5WCFjdDWVtTSRORkRERKSLRS8iKq3y9fbGd9XJMjIyIJfn69REpAd6DOqApoPsIAjaXB+jVJjAMNEByX9bwPClA0xhl23BCwAM5EbIeGqN+f33Ydqw75GclFJQ0YtMgxq2OLPBG+XtMotctx/Gou3og3ga8VLiZERERERERATkoeiVkJCAsLAwhIVlvr0sOjpabL/589dff2HXrl0oV65coYUmosI3eupAVO1khHRNMrSCBmptGtI1yUjVvESaJgnpmmRkaFNzfb5UTQKStdE6fYZyY8TdNsWY1j9gz+ZjBX0Lha6GiyXObPCGU9nMR0Hvh8Wj3ZhDeBFT/Ip4RERE9P/t3Xd8VMX+xvHnbEsjpBE6giBNAbELiIB0RRQL4LUAKkVQLyJWFEGk/TAKViyIiihcbCjSpKgg0SuKV1FCbyKdJEB6duf3R8jBJRAChGzK5/165WZnds7sd5Pj5u7DnFkAQGlT4MsbR44cqWeffbZAkxpj9Nxzz+nJJ588o+JKIi5vRFmz5reNmv3+EiX8uFOOlEg5LY/SfcmygjNULsatcxrGqt2NV+jiZhfI5zN6Y9xM/fDpVoU6YvLM5Y3co1Hv9lOV6hWP80jF19adh9T2vq+08a+DkqRLz4/V0sldVC6Uzf8BAEDgcXkjgLKqwKFXfHy8VqxYIWOMHn30Ud122226+OKL/SezLIWFhemSSy7RpZdeelYKLu4IvVCW+Xw+ZWVmKyg4/73AsjKzFPfku0pYfFhBzjC/+1J9BzToxU66slXTs1hp4ftr92E1u3u2/tqdIknq3LyGZr/QUW4Xl3oDAIDAIvQCUFad1kb2I0eO1E033aTGjRufjZpKNEIvoOC2b/5bowZMlbU/1q8/05uqdv1q6/b7ugaostOzesMBXXXvF0o+nClJurtrfb399NWyLCvAlQEAgLKM0AtAWXVaSxCeeeYZAi8AZ6zGuVX15oJh6vTvc5XqTbL7Pc5QffP2Do28//XAFXcaGp0XrdlxHeRx57y0vvPFWj03ZVWAqwIAAACAsqlAK70KupeX38SWpaeffvq0iirJWOkFnJ4t6//S07dPVaivkl+/q+p+Tfx4qNyekrM/1n++3qgeTyyWJFmW9NXETurc4pwAVwUAAMoqVnoBKKsKFHo5HKe+IMyyLHm93tMqqiQj9AJOX2pKmv7dLU6OA/4b2WeE7takLwYrIjI8QJWdurFTV+nJV3+SJEWVD9LP07rp3GrlA1wVAAAoiwi9AJRVBUqzfD7fKX+dTuA1a9Ys3XDDDapevbrCwsLUtGlTvfPOOzo2l5syZYrq1aun4OBgXXjhhZozZ06euZKTk3XPPfcoOjpa4eHhuuWWW7Rz584841asWKFmzZopJCRENWvW1Pjx4/M8HoCiERoWojfmP6nYizJkjM/uD0qtpEHtJ2nsw2/poe4TdHebUerTepTGDHlT2zf/HcCKT+zx3k11Q6uakqTEgxm65bFFSs/IDnBVAAAAAFB2nLWPFUtMTDzlY1544QWFhoYqLi5OX375pTp37qy+ffv6XV45Y8YM9e3bVz169NC8efPUrFkzdevWTT/88IPfXD169NDChQs1efJkTZ8+XWvXrlXnzp2VnX30TeeGDRvUsWNHValSRXPmzNHgwYM1fPhwxcXFnf4TB3BGHA6HnnvrAV10c4SyfZl2f5ipqC3fGqVuipD7UCV5DlfS1u+kZ2+ZrbuajdLzT0xVelpGACv3Z1mW3hvZRufVyFnd9UvCPj0wYUWAqwIAAACAsuO0Pr3xRDIyMvTFF19o+vTpmj9/vtLT00/p+H379qlChQp+ff369dPMmTOVmJgoh8Oh+vXr65JLLtGHH35oj2nevLkiIyM1d+5cSVJ8fLyaN2+uBQsWqEOHDpKktWvXqmHDhpoxY4a6d+8uSerfv78WLFigdevWyePxSJKefPJJvf7669q1a5eCgoJO+WfA5Y1A4Zn94SJ9NuF3BTnDCjQ+xbdfXe5rop59rzvLlRXcb+v368renystI2f166uPtdDAWy8IcFUAAKAs4fJGAGXVGa/0MsZo0aJF6tOnjypVqqQePXooPj5e//rXv055rmMDL0m66KKLdPDgQaWkpGjTpk1at26dHVrl6tmzpxYvXqyMjJxVHvPmzVNkZKTat29vj6lfv76aNm1qB2O542688UY78MqdKykpSfHx8adcP4DCdcO/2mngpGuU6jtg93l92Ur1JirDm5JnfJgjRkvf2KE+rUbp95/XFmWpJ9SkbozeeLKl3X5gwgrN/mZL4AoCAAAAgDLCdboH/vzzz5o+fbpmzJihXbt2ybIs9ezZU/fff7+uvPJKWZZVKAUuX75c1apVU3h4uJYtWyZJatCggd+Yhg0bKjMzU5s3b1aDBg2UkJCg+vXr56mhYcOGSkhIkCSlpKRo+/bteeZq0KCBLMtSQkKCWrduXSjPAcDpu/zqC/XGsnpasfgXVa4Rq/oXnCu3x630tAzNeme+vpv9u7L3hsvjDLGP8aRU0ot9F+iqO1fr7oduDmD1Oe68rp5+33BAE6b9Jp/P6LZhi7Vkchdd2bjSyQ8GAAAAAJyWUwq9Nm3apOnTp2v69Olav369qlWrpttvv12XX365evTooZtvvlnNmjUrtOKWL1+uGTNm2Hts5e4TFhkZ6TcuKipKknTgwAF73LFjcsfljklKSjruXB6PR6Ghofa448m9hPF4tm/frho1apzwfgCnLjQsRO26tvDrCw4J0p2DbtCdg27QlvV/acz970n7YmRZOQtY3Y5gxX+wV9s2vKYRrw4MRNl+xj1whbbvTtGMhRuVluFVl8HzteKdG1SvZmSgSwMAAACAUqnAlzc2a9ZMdevW1SuvvKK2bdvq22+/1bZt2zRhwgRdfPHFhV7YX3/9pR49eqhNmzZ68MEHC31+AKVHrbrV9eaCYer2ZEOlaI/d77Ac2vmjSwO7jlVWZlYAK5QcDkvvjmitNpdWlSTtT85Qpwfnaff+1IDWBQAAAAClVYFDrx9//FG1atXSm2++qUmTJumqq646a0UlJSWpc+fOiomJ0SeffCKHI6fM3BVdycnJfuNzV4BFR0fb444dkzsud0zuCq9jx2VmZio1NdUedzybNm064RervIDA6XxzK01Z/qisivv8+r1/x6hv27FKTUkLUGU5gjxOfTqhvRrVyXkt27zjkLo8tECHUwMbyAEAAABAaVTg0OuVV15RlSpV1K1bN1WuXFn9+/fX0qVLVYgf/ihJSktLU5cuXZScnKx58+YpIiLCvi93/63cfblyJSQkyOPx2JcdNmjQQGvXrs1TW0JCgj1HWFiYatSokWeu3OOO3esLQMkQFOzRa3MeV8WLM2SM72h/WmUNuvb5gK/4igwP0ryXOqt6pZxPpFz55171eGKRsrN9JzkSAAAAAHAqChx6DRw4UMuXL9fGjRs1ePBgLVu2TG3btlW1atU0fPhwWZZ1xpvXZ2dnq3v37lqzZo3mz5+vatWq+d1fu3Zt1atXT7NmzfLrnzlzptq2bWt/CmPnzp2VmJioxYsX22PWrVunVatW6dprr7X7OnfurNmzZysrK8tvrsjISDVv3vyMnguAwHE4HBr15gO6tEeUsn0Zdr8npZIGXf9/8vkCGzBVr1RO8yZ1VkS5nNesud9v14Cxywr9HxEAAAAAoCyzzBm8y8r9BMeZM2dq586dqlSpkq6//np17dpV7dq1U3Bw8CnN169fP7311luKi4vLEzpddNFFCgoK0kcffaTbb79dTz/9tNq0aaOZM2fq7bff1nfffee3iX6nTp30559/Ki4uTsHBwRo2bJgcDodWrlwplytn//4NGzaoadOm6tSpkwYOHKjff/9djz76qEaPHq2hQ4ee1s8kd7XZpk2bTut4AIVrxltfadHrW+R0uO0+d/UDeunTR+1LpwPlm5V/q+MDc5WZlRPCjex/iYb3vSSgNQEAgNJn0Z+7A/bYffv2lbVzNe+PAATEGYVeuXw+n5YsWaIPPvhAn332mQ4dOqTQ0FAdPnz4lOapVauWtm7detz7Nm/erFq1akmSpkyZonHjxmnbtm2qX7++xowZoy5duviNT05O1pAhQ/Tpp58qOztbHTp00Msvv6yqVav6jVuxYoWGDBmiX3/9VbGxsRo0aJAee+yx0161RugFFD9vPz9LP360Tw7Lafd5aiTqhZlD5Pa48zny7JuxYINuG7bEbs8a1063tDvxJ8QCAACcKkIvAGVVoYRe/5Senq7Zs2frww8/1OzZswtz6hKB0AsoniYOf19/fpUqyzq6uivVtVvPTb9bNetUy+fIs+//3vtVj738X0lSaLBL8VNvUJO6MQGtCQAAlB6EXgDKqkIPvco6Qi+g+Hpu8Bvavtx/FWeaN1nXDbpAjS+tq+DQYIWGBatytdgircsYo7uGL9UH8zZIkmpVDddP73dThchTu0QcAACgsBRWUEboBSCQCL0KGaEXULy9NvpDrfxkn9yOEwdKKdqrkR/coToNahZZXWnp2bq635da+edeSVKbS6tqwSvXyu0K7L5jAACgbCL0AlAa8G4KQJkycNi/dO/zVynVt/+EY8IUqxF3va+M9Mwiqysk2KXPJrRXpZgQSdLSlX9r6MQfiuzxAQAAAKC0IfQCUOY0v+ZivTCvvzLDTvwvmKG+Shp624tFWJVUvVI5ffp/7eVx57w0vzRjtWYs2FCkNQAAAABAaUHoBaBMiq0UrSlLh6n7iEY6v0uI6nVwq0YLnzK9afaYzO1RemXU9CKtq/mFlfXyIy3s9r3Pfac/NyUWaQ0AAAAAUBoQegEosxwOh9p2aa5/j7hTD4/po6cmDVCz2yr7jfnlswP6ftHPRVpX324N1KtLPUlSSlq2bn70ax1KKbpLLQEAAACgNCD0AoB/6PdoD4XUTrbbbkeQJj+6UAf2JedzVOGyLEuvPX6VmtSNliQlbEnSPaO+E587AgAAAAAFR+gFAMeY8MFgpbmO7vcV6ojRsN6vFmkNocEuffJ/7RVRziNJmrVokyZ/sqZIawAAAACAkozQCwCO4fa4NWr63UrzHrT7fLsqaPrrXxRpHefViNB7I1rb7Ucm/aAtfx8q0hoAAAAAoKQi9AKA46hZp5o69K3n17fgzbXa+deeIq3jhta11K9bA0k5+3vdM+pbLnMEAAAAgAIg9AKAE7hjYFdZFffZ7RBnhJ7q9WaR1zHh31eqRqUwSdKSn/7Wm59ymSMAAAAAnAyhFwDkY8z7g5TqTbTbruSKintyapHWUL6cR28/3cpuD530o7bu5DJHAAAAAMgPoRcA5CO6QoRueeQS+YzP7lu3MEv9O48u0k907HBldd17Y85ljodTs3Qvn+YIAAAAAPki9AKAk7jhX+0UVvugf+feWP27/WR9OWNJkdXx/OArVf3IZY6L/rtDHy/eXGSPDQAAAAAlDaEXABTAhOkPyV39gF9fqDNKX0xYq6f7vSyfz3eCIwtPRDmPXnvsKrv95Kv/VVb22X9cAAAAACiJCL0AoADcHrde+fxxtelfTWneo5c1Oiyn9vwSpH4dx+jwodSzXkeXlueo1cVVJEkbth/UW5+xqT0AAAAAHI9l2BSmUNWuXVuStGnTpgBXAuBs2fnXHj111xtyHazk159i7dENAy9VWkq6EvcdkvEZ3XJ3B1WvVblQH/+/q/foit6fS5IqRodo4+c9VS7UXaiPAQAAyrZFf+4ulHn69u0ra+dq3h8BCAhWegHAKapSvaKmLHla1Zv75DNeuz/MVNSiV7fp+3f36M85aVozN11Pdntf69dsKdTHv7xRRd3S9lxJ0p4DaYr74LdCnR8AAAAASgNCLwA4TU+/NEDt7qupDG/KCceEOCM18q4PdCj5xGNOx5hBl8vptCRJz3/wm3bvP/uXVgIAAABASULoBQBnoMe91+rfr3dUim/fCceEmYr6940vFOpm93XPiVC/bg0lSYdTszTq7V8KbW4AAAAAKA0IvQDgDF105fma/O1gXdWnklreXVk3PFZP1w6p7bcCzH2okh7rNbFQH3f4vRcrLMQlSXrj0zXasD35JEcAAAAAQNlB6AUAhaBceKjuHHSD7hjYVdfe2lo3/Kudrv/3+fL6su0xB9eU02ujPyy0x6xcIVQP39FEkpTtNXrqtZ8KbW4AAAAAKOkIvQDgLLm5d0fVax/k1/fTx3u0MWFroT3G0DuaKDYqWJI08+tN+umPPYU2NwAAAACUZIReAHAWPTr+HnnOSbTbHmeoRg94v9DmDw/zaPi9F9vtx17+r4wxhTY/AAAAAJRUhF4AcJZNmD5YKeboRvfuw5U0deInhTZ/v5saqk718pKkpSv/1oL4vwptbgAAAAAoqVyBLgAASrvgkCD96/Hm+mxcghxWzr81LH1vk7r+K1ExFaPOeH6P26nRAy9TzycXS5Iee/lHdbiyuhwO64znBgAAZVO78yud0fGL/txdSJUAwOljpRcAFIFrb20tT7WjlzmGOCM0/N7JhTb/re1q69LzYyVJv60/oOnz1hfa3AAAAABQEhF6AUARefbtAUrzJtvtzB1RGthlrObO+kY+n++M5nY4LI1/4HK7PfKtX5SdfWZzAgAAAEBJRugFAEUkpmKU2vSqbbcdlkPeXTGaPX6del06XsP7v6JDySmnPf81l1VT28urSZI2/nVQM7/eeMY1AwAAAEBJRegFAEWoz+Cb5Yvek6c/1BGj3T97NKj1q3rx6feUne09rfmfvuci+/bod1bJ5+OTHAEAAACUTYReAFDEXp/7hGpf41SKlTf8CnFGKmFehnpfOU7vvPjJKYdfV19cRVc1rSxJWrM5SZ8u2VwoNQMAAABASWMZY1gGUIhq1865dGnTpk0BrgRASfBL/Gp9+PIC7VtjKchZLs/9qd5E1bw0VC2vbaofFq/Wlt/2yXsoSMadoYdfuUVNL2+Y55iFP/yljvfPlSRdWC9Gq6bfJMvikxwBAEDRyf30xr59+8rauZr3RwACgpVeABBAFzdrpOc/fFj/N7eXQmsnK9uX6Xd/qDNKe1cF6dPRa/T3D055UispxBmpUF8lPT/gc+3dfSDPnO2vqKbLjnyS4//W7decZduK5LkAAAAAQHFC6AUAxUDFKjF68T+PaOi7nWVi9srryzrpMWGOGD1yyyt5LoG0LEtP/WNvr+em/CIW9QIAAAAoawi9AKAYadikjt5cMExPzuiqiPNTlOY96Hd/hvewMrxHP+ExKK2yHu81Mc88119dUxfWi5Ek/fePvVr0446zWjcAAAAAFDeEXgBQDNWuV0P/9/5DenPFA2p+V6zqd/TornGX6J2fB6vHUxf7rQQ7tDZcb4yf6Xe8ZVl6sk9Tuz1ldkJRlQ4AAAAAxYIr0AUAAE4sOCRIvR7s5tfX+eZW+vPnTVq38Gjw9ePM3YqtslA33dXB7uvW5lzFRARpf3KGvvhuqw6nZqlcqLvIagcAAACAQGKlFwCUQA+P6SN39aOb2Lsdwfpq4lp99Oaco30uh25pm/OJsmkZXn3x3dYirxMAAAAAAoXQCwBKqLgZQ5Tm2WW3XY4gLZ68VVMnfmL33daxjn37owUbirQ+AAAAAAgkQi8AKKGCgj16bcFQpQcfDb6cDre+f3+3XhvzoSSp5UVVVK1imCRp/ort2p+UHpBaAQAAAKCoEXoBQAlWLjxUb3z9mDLDdtt9TodLqz5J1rD74mRZUs8OOau9sr1GnyzZHKhSAQAAAKBIEXoBQAkXHBKkNxY+Lm/kHr/+6R9N05133qmbWtew+7jEEQAAAEBZQegFAKWAJ8ityfOfkKtKkozxaenmd7Q1+X+aPn26Hup/s86tEiJJ+vaXndqxJyXA1QIAAADA2UfoBQClhMvl1CtfPKILbnZp2+H/2f3//e+P2rLqY0mSMdKMhaz2AgAAAFD6EXoBQCliWZb+/eS9WrRokSpUqGD3m30/2rfHvfy9/t6+53iHAwAAAECpQegFAKXQ1Vdfrf/+97+6+uqrJUlB2YcU5cuWJO3zujSw6/v6csaSQJYIAAAAAGcVoRcAlFLnnnuuvvnmGy1atEitL+uiurLs+3Y5y+uLCWs17N6XlJ3tDWCVAAAAAHB2EHoBQClmWZbatm2reStmqM891VTXl6HrJTWR5LCc2vdrsO5uOUa/xK8OdKkAAAAAUKgIvQCgDLAsSwMGddX3825XhfDd/1jzJYVkVdKrg77RI3e+oMOHUgNWIwAAAAAUJkIvAChDYitF6+3Fw1SrlaVsX6bd73J4dHBNOd3X6iWNe+Rtbd/8dwCrBAAAAIAzZxljTKCLKE1q164tSdq0aVOAKwGA/C37eqXeHDZPob5Kee7zGa8yPPvUoFkl3T7oOtWsUy0AFQIAgJKO90cAAonQq5Dxog6gJPH5fIp78l39sSBZQc6w448xXqW796n+lRV1x6DrVKtu9SKuEgAAlFS8PwIQSIRehYwXdQAl0V9bdmnMA1OV9leIPM7QE47z+rIUVOOQHp5wu2rXq1GEFQIAgJKI90cAAonQq5Dxog6gJEtNSdPHUxdo+Zd/KHNP6AlXf2X5MlS+TpoeieulaufkvTwSAABA4v0RgMAi9CpkvKgDKC3S0zL0ybsL9N0XvytjV4iCnOXyjvEe1B0jrlT7G64KQIUAAKC44/0RgEAi9CpkvKgDKI0y0jM1Je5jrfhkq8IcMX73ZfnS1fruc3TX/TcGpjgAAFBs8f4IQCA5Al0AAKD4Cwr2aOCwf2nqD0NVv1OQUr2J9n1uR7CWTd2pcUPfCmCFAAAAAOCP0AsAUGBuj1tDnuuliQv6Kc29y+53WE5t/sZoyG3Py+fzBbBCAAAAAMhB6AUAOGUxFaP05pLH5Ive49efsr68+nUYo9SUtABVBgAAAAA5CL0AAKclOCRIb8x/UuUbHvbrdyZVVP+2z2vPzv0BqgwAAAAACL0AAGfA4XBowrQhqtveLZ/x2v2h2ZU0pMsb+nr28gBWBwAAAKAsI/QCAJyxoWP7qPW91ZTlTbf7wqwK+njUn7qr2SjNfHsue30BAAAAKFKWMcYEuojShI/kBVCWLfkqXu8+9b1CnOXz3Jfq26/gGK/OaVhBl7ZqqDbXXqngkKAAVAkAAIoK748ABFKxWum1YcMGDRgwQE2bNpXL5VKjRo3yjGndurUsy8rzlZCQ4DcuOTlZ99xzj6KjoxUeHq5bbrlFO3fuzDPfihUr1KxZM4WEhKhmzZoaP368yAEB4PRcc10zPT71BqUH7cpzX6gjRo7EivprhUOfj12rQS3e0p1XjNKQ257XR2/OUVZmVgAqBgAAAFBaFavQ648//tBXX32l8847T+eff/4Jx7Vo0ULx8fF+X7Vq1fIb06NHDy1cuFCTJ0/W9OnTtXbtWnXu3FnZ2dn2mA0bNqhjx46qUqWK5syZo8GDB2v48OGKi4s7W08RAEq985vW1XvfD1f3EY2UFb5bPnP8yxpdDo9CvZWUsr68vnnzb/W5coI+enNOEVcLAAAAoLQqVpc3+nw+ORw5OVzv3r21cuVKrV692m9M69atVa5cOc2Zc+I3RvHx8WrevLkWLFigDh06SJLWrl2rhg0basaMGerevbskqX///lqwYIHWrVsnj8cjSXryySf1+uuva9euXQoKOvXLbli+CwD+folfrQ8mzde+LWlyZoTL4wzNd3xGyC4NGnujLruqSRFVCAAAzhbeHwEIpGK10is38DpT8+bNU2RkpNq3b2/31a9fX02bNtXcuXP9xt1444124CVJPXv2VFJSkuLj4wulFgAo6y5u1kgvzBiq9394WlN+flB9JzVT/U5BUuxepfj25xkflFZZbzy4TGOGvBmAagEAAACUFq5AF3A6vv32W4WFhcnr9eqKK67QqFGjdPXVV9v3JyQkqH79+rIsy++4hg0b2nt/paSkaPv27WrQoIHfmAYNGth7hLVu3fq4j5/7rxXHs337dtWoUeM0nxkAlG4Oh0OXtmisS1s0tvvW/r5JcUM/kvbFyLJy/vHD6XBr63fSkJ7P6/kPhxTaP4oAAAAAKDtK3LuIVq1aadKkSZo/f77ee+89paamql27dn4rsxITExUZGZnn2KioKB04cECSlJSUJEl5xnk8HoWGhtrjAABnV/3GtfXmgmHq/kxjpTp3+92XsqG8+nUYo/S0jABVBwAAAKCkKnErvUaOHOnX7tKliy644AKNGjXK79LFsym/69HzWwUGADixdl1b6JouzfRE70lK+jPM7ncmVVS/a/5PL86+XzEVowJYIQAAAICSpMSt9DpWWFiYrrvuOv388892X1RUlJKTk/OMTUxMVHR0tKSjK7yOHZeZmanU1FR7HACg6DgcDo1//yHV6+CWz3jt/pCsSvr3da9q5197AlgdAAAAgJKkxIdex9OgQQOtXbtWx34wZUJCgr2HV1hYmGrUqGHv8ZUr97hj9/oCABSdh8f0Uet7qynLm273hZmKeuSGt7Rl/V8BrAwAAABASVHiQ6+UlBTNmTNHl112md3XuXNnJSYmavHixXbfunXrtGrVKl177bV+42bPnq2srCy7b+bMmYqMjFTz5s2L5gkAAI7r9vu66l8jL1GG97DdF2bF6uke07Tmt40BrAwAAABASWCZY5dDBVBqaqq9L9err76qjRs36oUXXpCUs4F9QkKCJkyYoG7duqlWrVr6+++/FRcXpz/++EPLli3T5Zdfbs/VqVMn/fnnn4qLi1NwcLCGDRsmh8OhlStXyuXK2cpsw4YNatq0qTp16qSBAwfq999/16OPPqrRo0dr6NChp/Uccvf0ym/fLwBAwa1Y8osmP7xEIc7ydl+qN1FPf9Bd9S44N4CVAQCAk+H9EYBAKlah15YtW3Tuucd/A7N06VJVr15d999/v/73v/9p//79CgsLU/PmzfXMM8/4BV5Szl5dQ4YM0aeffqrs7Gx16NBBL7/8sqpWreo3bsWKFRoyZIh+/fVXxcbGatCgQXrsscdkWdZpPQde1AGg8K364U+9cN8chToj7b4U3z6N//weVTunUuAKAwAA+eL9EYBAKlahV2nAizoAnB1rftuoMb1nKdRx9INGUqw9emXBg4qMLp/PkQAAIFB4fwQgkEr8nl4AgLKhYZM6emzKTUrzHv3U3TBTUQ92maj0tIwAVgYAAACgOCL0AgCUGI0uqqcBcW2V4U2x+0IyK+v+6yfI5/MFsDIAAAAAxQ2hFwCgRGl+zcXq/uRFyvIdXd3lTKqo4f1fDWBVAAAAAIobQi8AQIlz7a2t1bZvTfmM1+7b/YtbH7z2RQCrAgAAAFCcEHoBAEqk2+/rqppXHf2kXYfl0OK3Numn5b8FsCoAAAAAxQWhFwCgxHpq0gApdq/d9jhDNenBr7R394EAVgUAAACgOCD0AgCUaC9+PESpjt12O8wRo4dvfIVPdAQAAADKOEIvAECJFhoWohHv36U0b7LdF5LFJzoCAAAAZR2hFwCgxKvToKbuGtlcWb50u8+ZVFFDesYFsCoAAAAAgUToBQAoFdp1baFr7q0lry/b7kvbFKGR978ewKoAAAAABAqhFwCg1LhjYFddcF2YX9/fPzh1b7vntDFha4CqAgAAABAIljHGBLqI0qR27dqSpE2bNgW4EgAou4bd+5L2/Rrs15fpTVPNZi41a99EB5NSdDg5RSmH0pVyKF1ph9OVnpqlqufG6O4hN6tceGiAKgcAoHTh/RGAQCL0KmS8qANA4Pl8Pj3cM06pmyJO+dg0b5KaXldJD464Qy6X8yxUBwBA2cH7IwCBxOWNAIBSx+Fw6MX/PKJO/z5XKWbfKR0b4ozU2vkZ6n3FOM18e+5ZqhAAAADA2UboBQAotbrd2V5Tvh+qKpdnKdObdkrHhlmxWvT6Nr076dOzVB0AAACAs4nLGwsZy3cBoHjatWOvFnyyXJIUHhmm8IhQRUSFKyIqXFEVIpSVla3nH3lfB9cHy+UIso9L9x7S6M9uV/ValQNVOgAAJRbvjwAEEqFXIeNFHQBKtnV/bNaY+z5QUGoluy+r3G69883TAawKAICSifdHAAKJyxsBAPiHehecq0lfDFaqb7/d5z5cSS8/+0EAqwIAAABwqgi9AAA4RkRkuG57opl8xmv3/fzZXq1fsyVwRQEAAAA4JYReAAAcx7W3tlZ43RS7HeQM03P3vi+fzxfAqgAAAAAUFKEXAAAn8NyUQUoxe+12cEZlff7BogBWBAAAAKCgCL0AADiB0LAQ3TOqrYw5urrryyk/BrAiAAAAAAVF6AUAQD7aXHulMkL22G3X4Qr689f1AawIAAAAQEEQegEAcBId77zIvu2wnHprzOeBKwYAAABAgRB6AQBwEj37XqcU3367nbjepUPJKfkcAQAAACDQCL0AADgJh8OhBi2j7HaQM0yvj5kRwIoAAAAAnAyhFwAABTDw6duU6U2z278t2iWfz5fPEQAAAAACidALAIACiK4QobCaR0OvMCtWs6cvDmBFAAAAAPJD6AUAQAHd/VgXGXN0ddcXb/8QwGoAAAAA5IfQCwCAArq4WSNlhOyx267Dsfpp+W8BrAgAAADAiRB6AQBwCq7tfal922E59NaoLwNYDQAAAIATIfQCAOAU3Hp3J6VYR1d7+fZGafWqdQGsCAAAAMDxEHoBAHAKHA6H2t7e0G47HS699vQnAawIAAAAwPEQegEAcIp6PdhNKWav3c74O1wbE7YGsCIAAAAAxyL0AgDgFDkcDjW/6Vy77XJ4NGnYzABWBAAAAOBYhF4AAJyGfo/1UKpvv90+vClYO7btDmBFAAAAAP6J0AsAgNPgcjnVtFNlu+12Buv5oe8HsCIAAAAA/0ToBQDAabp/+O1K9SbZ7UMbwrTs65WBKwgAAACAjdALAIDTFBTs0aU3VLHbTodLbzw5X9nZ3gBWBQAAAEAi9AIA4Iw8MPx2pXl22e0wU1Fjh7wVwIoAAAAASIReAACcEYfDoaGTuivLl2H3bV6WqTW/bQxgVQAAAAAIvQAAOENNLmug6pdZdtvtDNb4QdMDWBEAAAAAQi8AAArB0y/3V4r22O2gtMqaPHZGACsCAAAAyjZCLwAACoHb41afEdfIZ45uYh//nx3atWNvAKsCAAAAyi5CLwAACknbLs0Veu4hux3sDNcz974ZwIoAAACAsovQCwCAQvTs2/cp1Zt4tGNvrD59f2HgCgIAAADKKEIvAAAKUURkuDoPON+v77OJP+vwodQAVQQAAACUTYReAAAUsn/1v17eqKOb2oc6YvRMv9cDWBEAAABQ9hB6AQBwFjzz5t3K8B6228lrQ7Ts65UBrAgAAAAoWwi9AAA4C2qcW1VNr69gt50Ol954cr6ys735HAUAAACgsBB6AQBwljw44g6luXfZ7TBTUeMefiuAFQEAAABlB6EXAABnicPh0JBJtyrbl2H3bfwuQ2t+2xjAqgAAAICygdALAICzqOnlDVX10qNtjzNE4wdND1xBAAAAQBlB6AUAwFk2/JUBStFeux2UVlmvj/kogBUBAAAApR+hFwAAZ5nb41afEW3kM0c3sf/vrN3673f/C2BVAAAAQOlG6AUAQBFo26W5QmodstseZ6heHjxPO//aE8CqAAAAgNKL0AsAgCIy5t37lerYbbdDHdF67NY3lJGeGcCqAAAAgNKJ0AsAgCJSLjxUo6b3UZo3ye4Lyaqkh26JC1xRAAAAQClF6AUAQBGqVbe67hnbSlm+dLvPuytGox6cHMCqAAAAgNKH0AsAgCLWqtMVanF7VRnjs/u2fW/04RtfBrAqAAAAoHQh9AIAIADuefgWxV50dC8vh+XU15M36odvfw1cUQAAAEApQugFAECAjHrzfvmij356o8cZqlcfmq8d23bncxQAAACAgihWodeGDRs0YMAANW3aVC6XS40aNTruuClTpqhevXoKDg7WhRdeqDlz5uQZk5ycrHvuuUfR0dEKDw/XLbfcop07d+YZt2LFCjVr1kwhISGqWbOmxo8fL2NMoT83AACO5XA4NOmzh/N8ouPj3d/kEx0BAACAM1SsQq8//vhDX331lc477zydf/75xx0zY8YM9e3bVz169NC8efPUrFkzdevWTT/88IPfuB49emjhwoWaPHmypk+frrVr16pz587Kzs62x2zYsEEdO3ZUlSpVNGfOHA0ePFjDhw9XXByfogUAKBqhYSEaNb2PUv/xiY6h2ZU0ctDrgSsKAAAAKAUsU4yWNfl8PjkcOTlc7969tXLlSq1evdpvTP369XXJJZfoww8/tPuaN2+uyMhIzZ07V5IUHx+v5s2ba8GCBerQoYMkae3atWrYsKFmzJih7t27S5L69++vBQsWaN26dfJ4PJKkJ598Uq+//rp27dqloKCgU34OtWvXliRt2rTplI8FAJRd3y34Se8+Hi+3M1iSlO3L1KBXW+viZsdf9QwAQEnA+yMAgVSsVnrlBl4nsmnTJq1bt84OrXL17NlTixcvVkZGhiRp3rx5ioyMVPv27e0x9evXV9OmTe1gLHfcjTfeaAdeuXMlJSUpPj6+MJ4SAAAFcnXHy1T3mhC77XJ4NHHIZ/L5fPkcBQAAAOBEilXodTIJCQmSpAYNGvj1N2zYUJmZmdq8ebM9rn79+rIsK8+43DlSUlK0ffv2PHM1aNBAlmXZ4wAAKCqPTbjHb3+vkKxKmvj0+wGsCAAAACi5XIEu4FQkJiZKkiIjI/36o6KiJEkHDhywxx07Jndc7pikpKTjzuXxeBQaGmqPO57cJbrHs337dtWoUSO/pwEAwHE5HA4NHN9FUx5eIafDLUn6bW6itt69QzXrVAtwdQAAAEDJUqJWegEAUNo1a3ORoi7IsNtBzjCN6jc1gBUBAAAAJVOJWumVu6IrOTlZlStXtvtzV4BFR0fb47Zv357n+MTERHtM7gqv5ORkvzGZmZlKTU21xx1Pfpsw5rcKDACAghg5+T71azlRYY4YSZIzuaIWffG92nVtEeDKAAAAgJKjRK30yt1/69j9thISEuTxeOzAqUGDBlq7dq2O/WDKhIQEe46wsDDVqFEjz1y5xx271xcAAEUlNCxEtwy5zK9vetySAFUDAAAAlEwlKvSqXbu26tWrp1mzZvn1z5w5U23btrU/hbFz585KTEzU4sWL7THr1q3TqlWrdO2119p9nTt31uzZs5WVleU3V2RkpJo3b36Wnw0AACd24x3tlObZZbfdh2P1/aKfA1gRAAAAULIUq8sbU1NTNXfuXEnS1q1bdfDgQX388ceSpFatWik2NlYjRozQ7bffrjp16qhNmzaaOXOmfvzxR3333Xf2PM2aNVPHjh119913Ky4uTsHBwRo2bJiaNGmim266yR73yCOPaPr06brttts0cOBA/f7775owYYJGjx5tB2gAAATKTQOba97EnEvqLcuhqWPnqUW7SwJcFQAAAFAyWObYawADaMuWLTr33HOPe9/SpUvVunVrSdKUKVM0btw4bdu2TfXr19eYMWPUpUsXv/HJyckaMmSIPv30U2VnZ6tDhw56+eWXVbVqVb9xK1as0JAhQ/Trr78qNjZWgwYN0mOPPSbLsk7rOeReYpnfvl8AABTUnVeMUqi3kiTJZ7y675WWurhZowBXBQBAwfD+CEAgFavQqzTgRR0AUJg+fONLffvWzqMdFfbqjfnDAlcQAACngPdHAAKpRO3pBQBAWdOz73VKsfbYbe+eSP356/oAVgQAAACUDIReAAAUYw6HQ9f8q6HddjrcemX4xwGsCAAAACgZCL0AACjmev+7m1LMXrudvj1MB/YlB7AiAAAAoPgj9AIAoJhzOBy6uHN1u+12BuvtCaz2AgAAAPJD6AUAQAlwz9CblOlNtdu/L/07gNUAAAAAxR+hFwAAJUBEZLiCqx4NvUJ9lRS/dFUAKwIAAACKN0IvAABKiJv6Xe3X/uiVhQGqBAAAACj+CL0AACgh2t9wld+G9smbXEpPywhgRQAAAEDxRegFAEAJUrdZtH072Bmu91/+PHDFAAAAAMUYoRcAACXIvY/eJK8vy25/P3ttAKsBAAAAii9CLwAASpBq51SSL+KA3fakx2rdH5sDWBEAAABQPBF6AQBQwnT418X2bYfl1DsTZgewGgAAAKB4IvQCAKCEuaVPJ6V6E+32X7+lBrAaAAAAoHgi9AIAoIRxuZyKbeC022GOClo694cAVgQAAAAUP4ReAACUQLf0vcavPXvqdwGqBAAAACieCL0AACiBml9zsVLMXrt9YIPk8/kCWBEAAABQvBB6AQBQQp3TtJx9O8QZqS8+XBLAagAAAIDihdALAIAS6l/3d/ZrL5jx3wBVAgAAABQ/hF4AAJRQjS6qp1THbrudtiNYGemZAawIAAAAKD4IvQAAKMHqN4u1bwc5y2nm23MDWA0AAABQfBB6AQBQgt354PXyGa/d/u7z1QGsBgAAACg+CL0AACjBatappszgo5/i6NtfXslJhwJYEQAAAFA8EHoBAFDCXdimpn3b7QzWe5M+D1wxAAAAQDFB6AUAQAnX68GuyvJl2O2f5m0JXDEAAABAMUHoBQBACRdTMUqu2IN2OzS7kn5a/lsAKwIAAAACj9ALAIBS4MZ7W/i1p704L0CVAAAAAMUDoRcAAKVAp5uvVoo5uqH9wU1upaakBbAiAAAAILAIvQAAKAUcDocaXBVjt4Oc5fTOC58GsCIAAAAgsAi9AAAoJfo9fquy/7Gh/Y9fbQpgNQAAAEBgEXoBAFBKVKwSI0eFZLvNhvYAAAAoywi9AAAoRbr1vcqvPe3F+QGqBAAAAAgsQi8AAEqRvBvau7Tzrz0BrAgAAAAIDEIvAABKEYfDofot/De0f7rPmwGsCAAAAAgMQi8AAEqZB0b8S6neRLvtTKyoKXEfB7AiAAAAoOgRegEAUMpERpfXTUMuljE+u++7D7Zq++a/A1gVAAAAULQIvQAAKIW63dlenhpJdjvYGa5n7p4SuIIAAACAIkboBQBAKTX63UFK9e232+5DlfR474lKTUkLYFUAAABA0SD0AgCglIqIDFfPx6+Uz3jtvsTVoRpw1ct6/ompysrMCmB1AAAAwNllGWNMoIsoTWrXri1J2rRpU4ArAQAgx5DbnlfK+vJ5+tO8ybJC0xRROVjn1ItVo8vq6MrWTRUZnXcsAACng/dHAAKJ0KuQ8aIOAChufD6fRgx8Tdt+zFKQMyzfscb4lOY7KEdouqrULa8r2zVSh24tFBoWUkTVAgBKE94fAQgkQq9Cxos6AKC42rVjr/7v4feUtC5IbkdQgY/L9mUq052oqOoe1b+ohlp2vFiNLqknh4NdEgAA+eP9EYBAIvQqZLyoAwCKu03rtuutsZ9o1+ZDyjroVLAi5XS4TmmOLF+6MpUiR1CWQiKcCi7nVnCoWyHhQQoLD1a58iEqHxWm8lHlFF0hQlEVyqtCpWhFx0bK5XKe0mMd2JesjQlbtXndDm1dt1O7tiYqaU+aMg8ZGa9TDp9LTnnksFzKNpnyKUvGkS3L7VNQOUvlooMUUzlclWtEq0adyqp7fk3VPK/6KdcBADh1vD8CEEiEXoWMF3UAQEmTkZ6pn1es1v9+WKtNf+7Uvr9SlJ3sUagz6qw8nteXJa/JlpFXPnll5JOxfJLlkyxJPkuWHLKMQ04FyeMs/Esrvb5sZZrD8rky5Q41Co1wqXxMiKIrlVel6tGqWDVa0RUiVKFytGIrRSssPISVbQBwGnh/BCCQCL0KGS/qAIDSYs1vG7Xg4++15qftStkjhShaDqvsro7y+rJzQjrjlU8+mSOBnSyfjIzkMJJlJCPJOGQZS5ZxypJTDjnlsFxyWE5l+dLltTJknNlyenwKi3Yrtnp51axXWefWr6bq51bWOedWVVCwJ9BPGQDOGO+PAAQSoVch40UdAFBaJScd0rfz/qtV36/T3r+SlZKYpawUS05vsJyWR25HcJHU4TM+ZfgOyngy5AqSXMGWgkJdcrkdykzzKjPDq+x0n7LTHXJke+Sxyp3y5ZvFQYY3VT5lSzoSqlnG/q7c75Zk2d8lOYwsS7IcksNlyeVxyBXkkCfYpaBgl4JC3QoJC1JQsFtOt1Mul1NOp0Mut1NOl0Mut8v+7j5y2+1xyeVyyuV25fR7XPJ4XHK5XHIHuRUVU14Vq8SwEg7AcfH+CEAgEXoVMl7UAQBlVXa2Vwf2Jmn/3iQd2JOkpAMHlbT/kA4lpepQcqpSDqUr7VCGsjK9ys7yKjvLJ2+WT75sI2+2kfFKxhhZTktOpyWHy5InxKmICqGKrRqpKudUUN0LztH5TesqOOQUNuLP9mrbpr+1cc1WbduwSzu379f+nQd1+ECGMg4b+TJccpsQeZyhZ/GnU7r5jFdZvjR5rUx7BZs72CFPmFNuj1PuIKfcQS55glwKCnErKNitoBCPgkM8CgkLUkhYsELCgo4EbU45nU65joRyOd9dOd+PBG85QV1OMJf73RPkltvjInwDihneHwEIJEKvQsaLOgAAJdPhQ6navG67tqzfoQN7kpWceFiHk9OUcjBd2ZlHQrpsr7zZRt5sn7zZPvm8Rj6v5PMaGZ9kvDmrrhxHQjuny5LL7ZDT45DL7ZDD4VBaSqYyUnJWo3nTnfL4wuV2Fs0qubLAZ7wyxpdzCarx5ewZl7tazv4uWbKkI1/WP77bt60je8vJOjJzTp/+cXTu4/lMzv50PvuSV6+MZSSHT5bTyOk2cnoccgc55AlxKijUreAQt1yeIyvrXA7JspSdmX00FD5yzmVneeXN9ik7Myck9mYZ+bxGsqyc1X1HVvnl3M7pczgtOZw555/TfWQl35HvbndOAOn2OHNW7QW7Va58iMLKhyo8IlTlI8qpfFQ5RcVEKDKmvELDggkSi6mkAwe1Yc1WpRxKVVpqhtJTM5WeliGH06Hud3cOdHk23h8BCCRCr0LGizoAADgVPp9P2zfv1Oqf12nHlj3atytZSftSdDgpXb5scyRQywnVfEe+GyMZX87+YcZnyeTkOTLmSBRjLMnnkMM45ZBbTsstl4M9wnB6vL4sO9gz//jwCWP5coI9h5HDZXKCXk9O0OsOcsod7My5rDbELU+w216t5/Y45T5yqazLDuHc8gTlrNjzBLlzVvm5XPZluDmr/Jxyu1wKCvYoKMSjkNBghYQGl9oVfhnpmfrz1w1K+G2Ttq7bqd3bkpS8N12Zhy05s0MU7Aw/7nHp3kN6b9XDRVztifH+CEAglbwNLgAAAEoRh8OhmnWqqWadamf1cbKzvTqYdFhJBw4q5VBqzmqi7GxlZWYrKzNL2dleZWVmy5vtVVamN+d7VvaRlUY5q4+83iOrkLKPrD7K8irlULoOJ6Yp9VCmMlKylZVu5Mt0yPK65ZRHDsspp+Uu0x+CUNI5HW455T7+nUaS98hXhqSUnK7MI18pfoNzBxYuY3xHQzmTs5ovZ0Vfzlfu6j6/29Y/7jvyIRSWZSSHckI8p2Q5LDmcOfvj5aycc+R8uR1yOh2yrCMBdO6cJucSbR35PAsZk3O/OfLYuSXpyL57TocczpzVhRlpWcpM8yo7w6esNMnKDFKQI/yY/24i5FZEzm8in/+cHPndCQBlDCu9CllISIiys7NVo0aNQJcCAABQbBiTs2LNZ4x8Pt+R1Ws5beMzOff/4/+W2rf/ESAcadr/c/R27rgjY/7Rl2fciVg6csmi5dd3nJt+jaNBhrEf1//x//nYuZdR5pnxBOxn5NeXv2PntfL8L0o3I6PYauUDXYZt+/btcrlcSktLC3QpAMogVnoVsqCggm+sW9S2b98uSQRyOC7OD5wM5wjyw/mBk/nrr78k5Z4jrERBXryOlE4ul6tYv0cCULqx0qsM4Xp65IfzAyfDOYL8cH7gZDhHcDKcIwCAwlb6dnwEAAAAAABAmUfoBQAAAAAAgFKH0AsAAAAAAAClDqEXAAAAAAAASh1CLwAAAAAAAJQ6hF4AAAAAAAAodSxjjAl0EQAAAAAAAEBhYqUXAAAAAAAASh1CLwAAAAAAAJQ6hF4AAAAAAAAodQi9AAAAAAAAUOoQegEAAAAAAKDUIfQqAxISEtS+fXuFhYWpcuXKevTRR5WZmRnosnAGNmzYoAEDBqhp06ZyuVxq1KjRccdNmTJF9erVU3BwsC688ELNmTMnz5jk5GTdc889io6OVnh4uG655Rbt3Lkzz7gVK1aoWbNmCgkJUc2aNTV+/Hgd++GvxhiNGzdO55xzjkJCQtSsWTP98MMPhfOkUWCzZs3SDTfcoOrVqyssLExNmzbVO++8k+f3xflRNs2dO1etWrVSbGysgoKCVLt2bQ0ZMkTJycl+47788ktdeOGFCg4OVr169TR16tQ8c2VmZuqRRx5R5cqVFRYWpvbt22vt2rV5xhX071BBzkkUvcOHD6t69eqyLEsrV670u4/XkbLp3XfflWVZeb4ef/xxv3GcHwCAgDMo1Q4cOGCqVKlirr76ajN//nwzZcoUExERYQYNGhTo0nAGPv/8c1O9enVz8803m8aNG5sLLrggz5iPPvrIWJZlnnrqKbNkyRLTv39/43K5THx8vN+4jh07murVq5uZM2ea2bNnm0aNGpkLL7zQZGVl2WPWr19vypUrZ7p162YWLVpkXnjhBePxeMyECRP85ho7dqzxeDzmhRdeMIsWLTLdunUz4eHhZuPGjWfnB4HjuvLKK03Pnj3NjBkzzOLFi83jjz9uHA6HGTFihD2G86PsmjZtmnnkkUfMxx9/bJYuXWpefvllExMTY9q3b2+PWbZsmXE6naZ///5myZIl5qmnnjKWZZlZs2b5zdW/f38TERFhpkyZYubPn29atmxpqlWrZpKSkuwxBf07VNBzEkXv0UcfNZUqVTKSzE8//WT38zpSdk2dOtVIMvPnzzfx8fH217Zt2+wxnB8AgOKA0KuUGzNmjAkLCzP79++3+9544w3jdDrNjh07AlgZzoTX67Vv9+rV67ihV7169cxtt93m19esWTPTuXNnu71ixQojySxYsMDuS0hIMJZlmZkzZ9p9/fr1MzVr1jQZGRl23xNPPGEiIyNNenq6McaYtLQ0U758efPEE0/YYzIyMkzNmjXNfffddwbPFqdq7969efr69u1rypcvb587nB/4pzfffNNIsv8udOjQwTRv3txvzG233WYaNmxot7dv326cTqd544037L79+/ebsLAwM378eLuvoH+HCnJOouitWbPGhIWFmcmTJ+cJvXgdKbtyQ6/j/b3JxfkBACgOuLyxlJs3b57atWun6Ohou6979+7y+XxauHBhACvDmXA48v9Pd9OmTVq3bp26d+/u19+zZ08tXrxYGRkZknLOj8jISLVv394eU79+fTVt2lRz5861++bNm6cbb7xRHo/Hb66kpCTFx8dLyrns4ODBg36P6fF4dNNNN/nNhbOvQoUKefouuugiHTx4UCkpKZwfyCMmJkZSzuWKGRkZWrp0qW699Va/MT179tSaNWu0ZcsWSdLChQvl8/n8xkVHR6tDhw55zo+T/R0q6DmJovfAAw9owIABql+/vl8/ryPID+cHAKC4IPQq5RISEtSgQQO/vsjISFWpUkUJCQkBqgpnW+7v9tjffcOGDZWZmanNmzfb4+rXry/LsvKMy50jJSVF27dvzzNXgwYNZFmWPS6/x9y2bZvS0tIK6dnhdCxfvlzVqlVTeHg45wckSV6vV+np6frll1/07LPPqmvXrqpVq5Y2btyorKys4/6uJPn9TitWrKioqKg84/7596Ugf4cKek6iaH388cf6/fffNXz48Dz38ToCSbrgggvkdDpVu3ZtjR07Vl6vVxLnBwCg+HAFugCcXYmJiYqMjMzTHxUVpQMHDhR9QSgSiYmJkpTnd5/75jT3d1+Q8yMpKem4c3k8HoWGhvrNFRQUpODg4DxzGWOUmJiokJCQM3laOE3Lly/XjBkzFBcXJ4nzAzlq1qypHTt2SJI6deqkDz/8UFLhnh8FHVfQx0TRSU1N1ZAhQzRmzBiVL18+z/28jpRtVapU0ciRI3XFFVfIsix98cUXeuqpp7Rjxw698sornB8AgGKD0AsASrG//vpLPXr0UJs2bfTggw8GuhwUI3PnzlVKSor++OMPPffcc7r++uv19ddfB7osFBPPPfecKlWqpD59+gS6FBRDHTt2VMeOHe12hw4dFBISohdffFHDhg0LYGUAAPjj8sZSLioqKs/H0Es5/xr2z/1VULrk/kvqsb/73H95zf3dF+T8yP2X1WPHZWZmKjU11W+ujIwMpaen55nLsqw8l0Dh7EtKSlLnzp0VExOjTz75xN4LjvMDktSkSRM1a9ZM9957r2bPnq2lS5fqs88+K9Tzo6DjCvqYKBpbt25VXFycRo4cqeTkZCUlJenw4cOSpMOHD+vw4cO8jiCP7t27y+v16tdff+X8AAAUG4RepVyDBg3y7N2VnJysnTt35tnzAKVH7u/22N99QkKCPB6PateubY9bu3atjDF5xuXOERYWpho1auSZK/e43HG539euXZtnrnPOOYdLCopYWlqaunTpouTkZM2bN08RERH2fZwfOFaTJk3kdru1YcMG1alTR263+7jnhyS/3+nu3bvtN7H/HPfPvy8F+TtU0HMSRWPz5s3KzMzUddddp6ioKEVFRen666+XJLVp00bt2rXjdQT54vwAABQXhF6lXOfOnbVo0SJ7PwRJmjVrlhwOhzp06BC4wnBW1a5dW/Xq1dOsWbP8+mfOnKm2bdvan37UuXNnJSYmavHixfaYdevWadWqVbr22mvtvs6dO2v27NnKysrymysyMlLNmzeXJDVv3lzly5f3e8ysrCx9+umnfnPh7MvOzlb37t21Zs0azZ8/X9WqVfO7n/MDx/rxxx+VlZWl2rVrKygoSG3atNHHH3/sN2bmzJlq2LChatWqJSnnciaHw6FPPvnEHpOYmKiFCxfmOT9O9neooOckikbTpk21dOlSv68XX3xRkjR58mS99tprvI4gjxkzZsjpdOqiiy7i/AAAFB8GpdqBAwdMlSpVTKtWrcyCBQvMO++8YyIjI82gQYMCXRrOQEpKipk1a5aZNWuWad26talRo4bd3rNnjzHGmA8//NBYlmWGDx9uli5dagYMGGBcLpdZsWKF31wdO3Y0NWrUMP/5z3/MF198YRo3bmwuvPBCk5WVZY9Zv369CQsLMzfffLNZvHixmThxovF4PGbChAl+c40dO9YEBQWZiRMnmsWLF5ubb77ZhIeHm40bN579Hwpsffv2NZJMXFyciY+P9/tKT083xnB+lGXdunUzo0ePNl9++aVZtGiRiYuLM5UrVzZNmjQxGRkZxhhjli1bZpxOp7nvvvvM0qVLzfDhw41lWeY///mP31z9+/c3kZGR5p133jELFiwwrVq1MtWqVTNJSUn2mIL+HSroOYnAWLp0qZFkfvrpJ7uP15Gyq0OHDmbcuHHmq6++Ml999ZXp37+/sSzLDB482B7D+QEAKA4IvcqAP//807Rt29aEhISYihUrmqFDh9pvbFAybd682Ug67tfSpUvtcW+//bY577zzjMfjMY0bNzZffvllnrmSkpLM3XffbSIjI025cuXMTTfdZHbs2JFn3Pfff2+uuOIKExQUZKpXr27Gjh1rfD6f3xifz2fGjBljqlevboKCgswVV1zBG9YAqFmz5gnPj82bN9vjOD/KprFjx5qmTZua8PBwExYWZi644ALz9NNPm+TkZL9xs2fPNo0bNzYej8ecd955ZsqUKXnmSk9PNw8//LCpWLGiCQkJMe3atTNr1qzJM66gf4cKck4iMI4XehnD60hZ9eCDD5q6deuakJAQExQUZBo3bmwmTZqU5/fF+QEACDTLmGMuogcAAAAAAABKOPb0AgAAAAAAQKlD6AUAAAAAAIBSh9ALAAAAAAAApQ6hFwAAAAAAAEodQi8AAAAAAACUOoReAAAAAAAAKHUIvQAAAAAAAFDqEHoBAAAAAACg1CH0AgAUqhEjRsiyrECXUSJ88803sixL33zzTaBLydf69evVoUMHRUREyLIsff7553r33XdlWZa2bNlSZHVYlqURI0bY7UDU8E8+n0+NGjXS6NGjC23OP//8Uy6XS6tXry60OQEAAMoqQi8AwAnlhgq5X8HBwapatao6duyol156SYcOHSqUx/n77781YsQI/frrr4UyHwpXr1699Pvvv2v06NGaNm2aLr300kCXVCx89NFH2r59u+6///5Cm/P888/Xddddp+HDhxfanAAAAGUVoRcA4KSeffZZTZs2Ta+//roeeOABSdLgwYPVuHFj/fbbb35jn3rqKaWlpZ3S/H///bdGjhxJ6FUMpaWlKT4+Xvfcc4/uv/9+3XHHHapevXqgy5Ik3XnnnUpLS1PNmjUD8vgTJkxQz549FRERUajzDhgwQJ999pk2btxYqPMCAACUNYReAICT6ty5s+644w716dNHTzzxhBYsWKBFixZpz5496tq1q1/I5XK5FBwcHMBqUZj27t0rSYqMjAxsIcfhdDoVHBwckMtpV61apf/973/q3r17oc/drl07RUVF6b333iv0uQEAAMoSQi8AwGm55ppr9PTTT2vr1q364IMP7P7j7en19ddf66qrrlJkZKTKlSun+vXr68knn5SUs6/VZZddJknq06ePfSnlu+++K0latmyZbr31Vp1zzjkKCgpSjRo19NBDD+VZTda7d2+VK1dOO3bs0I033qhy5copNjZWQ4cOldfr9Rvr8/k0adIkNW7cWMHBwYqNjVWnTp20cuVKv3EffPCBLrnkEoWEhCg6Olo9e/bU9u3bT/qz2bp1qwYOHKj69esrJCREMTExuvXWWwu899SsWbPsx61QoYLuuOMO7dix47Sf7/79+3XnnXeqfPnyioyMVK9evfS///3P7+d8PCNGjLBXUT3yyCOyLEu1atXKt/bXXntNF1xwgYKCglS1alUNGjRISUlJ9v0vvfSSnE6nX19cXJwsy9KQIUPsPq/Xq/DwcD322GMnfKzj7elVq1YtdenSRcuXL9fll1+u4OBg1a5dW++//36e45OSkjR48GDVqFFDQUFBOu+88zR+/Hj5fL58n6Mkff755/J4PLr66qv9+nPP/3Xr1umOO+5QRESEYmNj9fTTT8sYo+3bt+uGG25Q+fLlVblyZcXFxeWZ2+12q3Xr1po9e/ZJ6wAAAMCJEXoBAE7bnXfeKUlauHDhCcf88ccf6tKlizIyMvTss88qLi5OXbt21ffffy9JatiwoZ599llJUr9+/TRt2jRNmzbNDhNmzZql1NRU3XfffXr55ZfVsWNHvfzyy7rrrrvyPJbX61XHjh0VExOj559/Xq1atVJcXJzefPNNv3H33HOPHXaMHz9ejz/+uIKDg/XDDz/YY0aPHq277rpLdevW1QsvvKDBgwdr8eLFuvrqq/0Cm+P56aeftGLFCvXs2VMvvfSSBgwYoMWLF6t169ZKTU3N99h3331X3bt3l9Pp1NixY9W3b199+umnuuqqq/I8bkGer8/n0/XXX6+PPvpIvXr10ujRo7Vz50716tUr3zok6aabbtKLL74oSbrttts0bdo0TZw48YTjR4wYoUGDBqlq1aqKi4vTzTffrDfeeEMdOnRQVlaWJKlly5by+Xxavny5fdyyZcvkcDi0bNkyu2/VqlU6fPhwnlCpIDZs2KBbbrlF7du3V1xcnKKiotS7d2/98ccf9pjU1FS1atVKH3zwge666y699NJLatGihZ544gm/8O1EVqxYoUaNGsntdh/3/h49esjn82ncuHG64oor9Nxzz2nixIlq3769qlWrpvHjx+u8887T0KFD9d133+U5/pJLLtHq1at18ODBU37+AAAAOMIAAHACU6dONZLMTz/9dMIxERER5qKLLrLbzzzzjPnnn5cXX3zRSDJ79+494Rw//fSTkWSmTp2a577U1NQ8fWPHjjWWZZmtW7fafb169TKSzLPPPus39qKLLjKXXHKJ3V6yZImRZB588ME88/p8PmOMMVu2bDFOp9OMHj3a7/7ff//duFyuPP0FqTk+Pt5IMu+//77dt3TpUiPJLF261BhjTGZmpqlYsaJp1KiRSUtLs8fNmTPHSDLDhw8/5ef7ySefGElm4sSJdp/X6zXXXHPNCX/m/7R582YjyUyYMMGvP/fc2Lx5szHGmD179hiPx2M6dOhgvF6vPe6VV14xksw777xjP3b58uXNo48+aozJ+ZnHxMSYW2+91TidTnPo0CFjjDEvvPCCcTgcJjEx0Z5LknnmmWdOWIMxxtSsWdNIMt99953dt2fPHhMUFGQefvhhu2/UqFEmLCzMrFu3zu95Pf7448bpdJpt27bl+3OpXr26ufnmm/P0557//fr1s/uys7NN9erVjWVZZty4cXZ/YmKiCQkJMb169cozz4cffmgkmR9//DHfOgAAAHBirPQCAJyRcuXK5fspjrl7Qc2ePbtAl40dKyQkxL6dkpKiffv2qXnz5jLGaNWqVXnGDxgwwK/dsmVLbdq0yW5/8sknsixLzzzzTJ5jcy/L/PTTT+Xz+dS9e3ft27fP/qpcubLq1q2rpUuXFrjmrKws7d+/X+edd54iIyP1yy+/nPC4lStXas+ePRo4cKDfvmjXXXedGjRooK+++uqUn+/8+fPldrvVt29fu8/hcGjQoEH5PodTtWjRImVmZmrw4MFyOI7+34u+ffuqfPnydu0Oh0PNmze3VzetWbNG+/fv1+OPPy5jjOLj4yXlrP5q1KjRae0ldv7556tly5Z2OzY2VvXr1/f7ucyaNUstW7ZUVFSU3++4Xbt28nq9x1199U/79+9XVFTUCe+/99577dtOp1OXXnqpjDG655577P7IyMg8deXKnXvfvn0nf8IAAAA4LkIvAMAZOXz4sMLDw094f48ePdSiRQvde++9qlSpknr27Kn//Oc/BQ7Atm3bpt69eys6Otret6pVq1aSpOTkZL+xuftz/VNUVJQSExPt9saNG1W1alVFR0ef8DHXr18vY4zq1q2r2NhYv681a9Zoz549+daclpam4cOH23tFVahQQbGxsUpKSspT8z9t3bpVklS/fv089zVo0MC+/1Se79atW1WlShWFhob6jTvvvPPyfQ6n6kS1ezwe1a5d26/2li1b6ueff1ZaWpqWLVumKlWq6OKLL9aFF15oX+K4fPlyv+DqVJxzzjl5+o79uaxfv17z58/P8/tt166dJJ30dyxJxpgC1xAREaHg4GBVqFAhT/8/6zp27kBs0g8AAFBauAJdAACg5Prrr7+UnJycb4ASEhKi7777TkuXLtVXX32l+fPna+bMmbrmmmu0cOFCOZ3OEx7r9XrVvn17HThwQI899pgaNGigsLAw7dixQ717984TnOU316nw+XyyLEvz5s077pzlypXL9/gHHnhAU6dO1eDBg9WsWTNFRETIsiz17NnztFa7nUhhPd+idtVVVykrK0vx8fFatmyZHW61bNlSy5YtU0JCgvbu3XvaodeJfi7/DKl8Pp/at2+vRx999Lhj69Wrl+9jxMTEHDesyq+GgtSVK3fuY0MyAAAAFByhFwDgtE2bNk2S1LFjx3zHORwOtW3bVm3bttULL7ygMWPGaNiwYVq6dKnatWt3wtUsv//+u9atW6f33nvPb+P6r7/++rRrrlOnjhYsWKADBw6ccLVXnTp1ZIzRueeee9Lw43g+/vhj9erVy++T+dLT00+6AX7uJyWuXbtW11xzjd99a9eute8/FTVr1tTSpUuVmprqt9prw4YNpzzXyR5Hyqmzdu3adn9mZqY2b95sr6CSpMsvv1wej0fLli3TsmXL9Mgjj0iSrr76ar311ltavHix3T5b6tSpo8OHD/vVdSoaNGigzZs3F3JVR23evFkOh+O0zj8AAADk4PJGAMBpWbJkiUaNGqVzzz1Xt99++wnHHThwIE9f06ZNJUkZGRmSpLCwMEnKEwrlroz550oYY4wmTZp02nXffPPNMsZo5MiRee7LfZybbrpJTqdTI0eOzLMKxxij/fv35/sYTqczz3Evv/yyvF5vvsddeumlqlixoiZPnmz/bCRp3rx5WrNmja677rp8jz+ejh07KisrS2+99Zbd5/P59Oqrr57yXPlp166dPB6PXnrpJb/nPmXKFCUnJ/vVHhwcrMsuu0wfffSRtm3b5rfSKy0tTS+99JLq1KmjKlWqFGqN/9S9e3fFx8drwYIFee5LSkpSdnZ2vsc3a9ZMq1ev9vs9Faaff/5ZF1xwgSIiIs7K/AAAAGUBK70AACc1b948JSQkKDs7W7t379aSJUv09ddfq2bNmvriiy/8Nl0/1rPPPqvvvvtO1113nWrWrKk9e/botddeU/Xq1XXVVVdJyll1ExkZqcmTJys8PFxhYWG64oor1KBBA9WpU0dDhw7Vjh07VL58eX3yySf5XlZ2Mm3atNGdd96pl156SevXr1enTp3k8/m0bNkytWnTRvfff7/q1Kmj5557Tk888YS2bNmiG2+8UeHh4dq8ebM+++wz9evXT0OHDj3hY3Tp0kXTpk1TRESEzj//fMXHx2vRokWKiYnJtza3263x48erT58+atWqlW677Tbt3r1bkyZNUq1atfTQQw+d8vO98cYbdfnll+vhhx/Whg0b1KBBA33xxRd2GFlYe0bFxsbqiSee0MiRI9WpUyd17dpVa9eu1WuvvabLLrtMd9xxh9/4li1baty4cYqIiFDjxo0lSRUrVlT9+vW1du1a9e7du1DqOpFHHnlEX3zxhbp06aLevXvrkksuUUpKin7//Xd9/PHH2rJlS76XFt5www0aNWqUvv32W3Xo0KFQa8vKytK3336rgQMHFuq8AAAAZQ2hFwDgpIYPHy4pZ1Py6OhoNW7cWBMnTlSfPn3y3cRekrp27aotW7bonXfe0b59+1ShQgW1atVKI0eOtFexuN1uvffee3riiSc0YMAAZWdna+rUqerdu7e+/PJLPfjggxo7dqyCg4PVrVs33X///brwwgtP+/lMnTpVTZo00ZQpU/TII48oIiJCl156qZo3b26Pefzxx1WvXj29+OKL9qqwGjVqqEOHDuratWu+80+aNElOp1PTp09Xenq6WrRooUWLFp30MlBJ6t27t0JDQzVu3Dg99thjCgsLU7du3TR+/PjT+iRDp9Opr776Sv/+97/13nvvyeFwqFu3bnrmmWfUokWLfAPLUzVixAjFxsbqlVde0UMPPaTo6Gj169dPY8aMkdvt9hubG3o1b97c79MeW7ZsqbVr1572fl4FFRoaqm+//VZjxozRrFmz9P7776t8+fKqV6+e37l5IpdccomaNGmi//znP4Ueei1evFgHDhxQr169CnVeAACAssYy+X30EAAAKJU+//xzdevWTcuXL1eLFi0CXU6JNG3aNA0aNEjbtm07rUDyRG688UZZlqXPPvus0OYEAAAoiwi9AAAo5dLS0hQSEmK3vV6vOnTooJUrV2rXrl1+96HgfD6fmjRpottuu03Dhg0rlDnXrFmjxo0b69dff1WjRo0KZU4AAICyissbAQAo5R544AGlpaWpWbNmysjI0KeffqoVK1ZozJgxBF5nwOFwaPXq1YU6Z8OGDU+6iT4AAAAKhpVeAACUch9++KHi4uK0YcMGpaen67zzztN9992n+++/P9ClAQAAAGcNoRcAAAAAAABKHcfJhwAAAAAAAAAlC6EXAAAAAAAASh1CLwAAAAAAAJQ6hF4AAAAAAAAodQi9AAAAAAAAUOoQegEAAAAAAKDUIfQCAAAAAABAqUPoBQAAAAAAgFLn/wGzxGGjI5YWJAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABL0AAAJzCAYAAADqc2FfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZN0lEQVR4nOzdd3QV1d7G8eec9ISQRkKHEGroHQIiJRRBqdJUFARB5CIqKnJRASmKcEERRKSI5YLk0hQRJDRFEJAiShEQCdVQAkkoKSQ55/0jbw6EBEhCkkn5ftY6y9kze2aeOcm9y/zce4/JarVaBQAAAAAAABQgZqMDAAAAAAAAANmNohcAAAAAAAAKHIpeAAAAAAAAKHAoegEAAAAAAKDAoegFAAAAAACAAoeiFwAAAAAAAAocil4AAAAAAAAocCh6AQAAAAAAoMCh6AUAAAAAAIACh6IXAAAAAAAAChyKXgAAAACQz8THx2vgwIEqV66cihYtqqZNm2rHjh1GxwKAPIWiFwAAAADkM4mJifL399e2bdsUFRWll19+WZ07d9b169eNjgYAeQZFLwAAACCDPv/8c5lMJp08eTJf3+N+9xs/frxMJpMiIiJyJcODyu3v7HZTp05VtWrVZLFYbPty4/tzc3PT2LFjVa5cOZnNZvXt21eOjo46evSorc/cuXNVrlw5xcfH51gOAMjLKHoBAAAgz5gzZ45MJpOaNGlidJR86ZdfftH48eMVFRVldJQ08nK2rLp69aref/99vfHGGzKbjf3T6q+//tKVK1dUqVIl274BAwbo5s2b+vTTTw1MBgDGoegFAACAPGPx4sXy9/fXr7/+quPHjxsdJ42nn35asbGxKl++vNFR0vXLL7/onXfeyVRhKbeeKSvZMsqon8tnn32mxMREPfHEE7l63zvFxsaqX79++ve//y0PDw/bfmdnZ/Xv318zZsyQ1Wo1MCEAGIOiFwAAAPKEsLAw/fLLL5oxY4Z8fX21ePHiDJ1348aNHE52i52dnZydnWUymXLtnjkl5XvL789048YNw55h0aJF6tKli5ydnXP1vrdLSEhQr169VKlSJY0dOzbN8d69e+vUqVPasmWLAekAwFgUvQAAAJAnLF68WF5eXnr00UfVs2fPdIteKWslHT58WE8++aS8vLz00EMP2Y6fO3dOAwcOVPHixeXk5KQaNWros88+S3WNU6dOadiwYapatapcXFzk4+OjXr16ZWg9qHutf3X8+HENGDBAnp6e8vDw0LPPPquYmJg01zh37pwGDRqkUqVKycnJSRUqVNALL7ygmzdvZvzLSsf48eP1+uuvS5IqVKggk8lky3qv7+1e62FFRESod+/eKlq0qHx8fPTSSy8pLi7OdnzAgAHy9/dPN8vtBah7ZcvMz+Nuz3G3Z8jI78O1a9f08ssvy9/fX05OTvLz81O7du20b9++e37fYWFh+uOPP9S2bdt79ktx6tQpVapUSTVr1tSFCxdsz3Ls2DH169dPHh4e8vX11dtvvy2r1aozZ86oa9euKlq0qEqUKKHp06enuabFYtHTTz8tk8mkL774It2iX4MGDeTt7a1vv/02QzkBoCCxNzoAAAAAICUXvXr06CFHR0c98cQT+uSTT7R79241atQoTd9evXqpcuXKevfdd23Tti5cuKCmTZvKZDJp+PDh8vX11bp16zRo0CBdvXpVL7/8siRp9+7d+uWXX9S3b1+VKVNGJ0+e1CeffKJWrVrp8OHDcnV1zVL+3r17q0KFCnrvvfe0b98+LViwQH5+fnr//fdtff755x81btxYUVFRGjJkiKpVq6Zz585p+fLliomJkaOjY5buLUk9evTQsWPH9PXXX+uDDz5QsWLFJEm+vr62Pul9b/d7Jn9/f7333nvauXOnPvroI0VGRurLL7/Mtmzr1q3L9M8jI8+R0d+HoUOHavny5Ro+fLiqV6+uy5cva9u2bfrzzz9Vv379uz7TL7/8Ikn37JPi77//Vps2beTt7a0NGzbYnl+S+vTpo8DAQE2ZMkXff/+9Jk2aJG9vb3366adq06aN3n//fS1evFivvfaaGjVqpIcffth27vPPP6/w8HCtX79e9vZ3/9Oufv362r59+31zAkCBYwUAAAAMtmfPHqsk64YNG6xWq9VqsVisZcqUsb700kup+o0bN84qyfrEE0+kucagQYOsJUuWtEZERKTa37dvX6uHh4c1JibGarVabf+83Y4dO6ySrF9++eU9cy5atMgqyRoWFpYm08CBA1P17d69u9XHxyfVvmeeecZqNputu3fvTnNti8Vy13tk1LRp09I9917f272eqUuXLqn6Dhs2zCrJ+vvvv1utVqu1f//+1vLly6e5Zsr5GcmWmZ/H3Z4jvWfI6O+Dh4eH9V//+leaDPfz1ltvWSVZr127luZYSs5Lly5Z//zzT2upUqWsjRo1sl65ciVNnyFDhtj2JSYmWsuUKWM1mUzWKVOm2PZHRkZaXVxcrP3797ftO3nypFWS1dnZ2erm5mb7bN26NU2eIUOGWF1cXDL9jACQ3zG9EQAAAIZbvHixihcvrtatW0uSTCaT+vTpo6VLlyopKSlN/6FDh6ZqW61WrVixQp07d5bValVERITt06FDB0VHR9umq7m4uNjOS0hI0OXLl1WpUiV5enred0rbvdyZqUWLFrp8+bKuXr0qKXkq2jfffKPOnTurYcOGac7PjfWo7sx4P//6179StV988UVJ0tq1a7MtU1Z+Hvd7jsz8Pnh6emrXrl36559/MpX78uXLsre3V5EiRe7a5+DBg2rZsqX8/f21ceNGeXl5penz3HPP2bbt7OzUsGFDWa1WDRo0yLbf09NTVatW1YkTJ2z7ypcvL6vVqtjYWF2/ft32adGiRZp7eHl5KTY2Nt3ptgBQkFH0AgAAgKGSkpK0dOlStW7dWmFhYTp+/LiOHz+uJk2a6MKFC9q0aVOacypUqJCqfenSJUVFRWnevHny9fVN9Xn22WclSRcvXpSU/Ka7sWPHqmzZsnJyclKxYsXk6+urqKgoRUdHZ/k5ypUrl6qdUuCIjIy0Zbx69apq1qyZ5Xs8qDu/t/upXLlyqnbFihVlNpsztP5ZRmXl53G/58jM78PUqVN18OBBlS1bVo0bN9b48eNTFZceROfOneXu7q7169eraNGi6fa58/fGw8NDzs7OqaZApuxP+V3KLOv/TwHNry8rAICsYk0vAAAAGGrz5s0KDw/X0qVLtXTp0jTHFy9erPbt26fad/voICl5FJUk9evXT/3790/3PrVr15aUPFpp0aJFevnllxUUFCQPDw+ZTCb17dvXdp2ssLOzS3e/NQNrZ+WWO7+3zLqzaHK3Ikp6o/PuJis/j/s9R2Z+H3r37q0WLVpo1apVCg0N1bRp0/T+++9r5cqV6tix413v4ePjo8TERF27dk3u7u7p9nn88cf1xRdfaPHixXr++efT7ZPe7012/y5FRkbK1dX1gX/+AJDfUPQCAACAoRYvXiw/Pz99/PHHaY6tXLlSq1at0ty5c+/5B7uvr6/c3d2VlJR037fpLV++XP3790/1Nry4uDhFRUVl+RkywtfXV0WLFtXBgwdz7B7ZPZLnr7/+SjWq6vjx47JYLLY3Nnp5eaX7vZ06dSrD2XLi55GZ3wdJKlmypIYNG6Zhw4bp4sWLql+/viZPnnzPole1atUkJb/FMaWAdqdp06bJ3t5ew4YNk7u7u5588smsPdADCgsLU2BgoCH3BgAjMb0RAAAAhomNjdXKlSv12GOPqWfPnmk+w4cP17Vr17R69ep7XsfOzk6PP/64VqxYkW5R6dKlS6n63jliZtasWZkanZQVZrNZ3bp103fffac9e/akOX63UTwxMTE6cuSIIiIi7nsPNzc3Scq2At6dhchZs2ZJkq0YVLFiRUVHR+uPP/6w9QkPD9eqVasynC0nfh4Z/X1ISkpKM4XSz89PpUqVUnx8/D3vERQUJEnp/ixTmEwmzZs3Tz179lT//v3v+3ucU/bt26dmzZoZcm8AMBIjvQAAAGCY1atX69q1a+rSpUu6x5s2bSpfX18tXrxYffr0uee1pkyZoi1btqhJkyYaPHiwqlevritXrmjfvn3auHGjrly5Ikl67LHH9NVXX8nDw0PVq1fXjh07tHHjRvn4+GT7893p3XffVWhoqFq2bKkhQ4YoMDBQ4eHhWrZsmbZt2yZPT8805/z6669q3bq1xo0bp/Hjx9/z+g0aNJAkvfnmm+rbt68cHBzUuXPnLOcNCwtTly5d9Mgjj2jHjh3673//qyeffFJ16tSRJPXt21dvvPGGunfvrhEjRigmJkaffPKJqlSpkmYR+rtly6mfR0Z+H65du6YyZcqoZ8+eqlOnjooUKaKNGzdq9+7dqUaepScgIEA1a9bUxo0bNXDgwLv2M5vN+u9//6tu3bqpd+/eWrt2rdq0afNAz5YZe/fu1ZUrV9S1a9dcuycA5BUUvQAAAGCYxYsXy9nZWe3atUv3uNls1qOPPqrFixfr8uXL97xW8eLF9euvv2rChAlauXKl5syZIx8fH9WoUUPvv/++rd/MmTNlZ2enxYsXKy4uTs2bN9fGjRvVoUOHbH229JQuXVq7du3S22+/rcWLF+vq1asqXbq0OnbsKFdX1we+fqNGjTRx4kTNnTtXP/zwgywWi8LCwrJ8vZCQEI0dO1ajR4+Wvb29hg8frmnTptmO+/j4aNWqVRo5cqRGjRqlChUq6L333tNff/2Vpuh1t2w59fPIyO+Dq6urhg0bptDQUK1cuVIWi0WVKlXSnDlz9MILL9z3HgMHDtTYsWMVGxt7z+m3Dg4OWr58uTp27KiuXbtq48aND/RsmbFs2TKVK1cuVwttAJBXmKx5aWVNAAAAAMgnoqOjFRAQoKlTp2rQoEFGx0kjPj5e/v7+Gj16tF566SWj4wBArmNNLwAAAADIAg8PD40aNUrTpk17oDd/5pRFixbJwcFBQ4cONToKABiCkV4AAAAAAAAocBjpBQAAAAAAgAKHohcAAAAAAAAKHIpeAAAAAAAAKHAoegEAAAAAAKDAoegFAACAfG3t2rVq2bKlfH195eTkpICAAI0cOVLR0dGp+n333XeqU6eOnJ2dVaVKFS1atCjNtW7evKnXX39dJUqUkJubm9q1a6ejR4/m1qPkmGXLlqlr164qU6aM3NzcVLduXX322We6851WCxcuVJUqVeTs7Kw6depozZo1aa4VHR2tQYMGydvbW+7u7urZs6fCw8Nz61Fy1PHjxzV06FDVrVtX9vb2qlmzZrr9Cvv3lBFHjhxRu3bt5ObmphIlSmjUqFG6efOm0bEAFDIUvQAAAJCvXblyRU2aNNHcuXO1fv16jRw5Ul9++aV69epl67Nt2zZ1795dQUFBWrdunfr06aNBgwZp+fLlqa41YsQIzZ8/X++++65Wrlyp+Ph4BQcHpymg5TczZsyQq6urpk+fru+++04dO3bU4MGDNWHCBFufpUuXavDgwerTp4/WrVunoKAgde/eXTt37kx1rT59+ig0NFRz587V4sWLdfToUXXs2FGJiYm5/VjZ7tChQ/r+++9VqVIlVa9ePd0+fE/3FxkZqTZt2ujmzZtauXKl3n33Xc2bN08jR440OhqAQsZkvfM/7wAAAAD53Pz58zVkyBCdO3dOpUqVUocOHXT9+nVt377d1ufJJ5/U/v37dfjwYUnS2bNn5e/vrzlz5mjIkCGSkgtq5cqV09ixYzVq1ChDniU7REREqFixYqn2DRkyRCEhIYqMjJTZbFbVqlXVoEEDLVmyxNanWbNm8vT01Nq1ayVJO3bsULNmzbR+/Xq1b99eknT06FEFBgZq6dKl6t27d+49VA6wWCwym5PHBQwYMEB79uzRwYMHU/Xhe7q/9957T5MnT9bp06fl7e0tSZo3b56GDRum06dPq1SpUgYnBFBYMNILAAAABY6Pj4+k5OmK8fHx2rJlS6qRX5LUt29f/fnnnzp58qQkKTQ0VBaLJVU/b29vtW/f3lbMyK/uLHhJUr169XT16lXduHFDJ06c0LFjx9IUY/r27atNmzYpPj5ekrRu3Tp5enqqXbt2tj5Vq1ZV3bp18/13JMlW8LobvqeMWbdundq2bWsreElS7969ZbFYFBoaamAyAIUNRS8AAAAUCElJSYqLi9O+ffs0YcIEdenSRf7+/vr777+VkJCgatWqpeofGBgoKXntoZR/+vn5ycvLK02/lD4FybZt21S6dGm5u7vbni+97+jmzZsKCwuTlPwdVa1aVSaTKU2/gvgd3YnvKWOOHDmS5jvy9PRUyZIlC8XzA8g7KHoBAACgQChfvrxcXFzUoEEDlSxZ0jb9LDIyUlLyH923SyluXblyxdbvzj4p/VL6FBTbtm3T0qVL9dprr0niO8oovqeMKezPDyDvoOgFAACAAmHt2rX65ZdfNH/+fP3555/q3LmzkpKSjI6V55w9e1Z9+vRR69atNWLECKPjAACQY+yNDgAAAABkh9q1a0uSgoKC1KhRI9WtW1erVq2yvYXvzjcwpozaSVl3yMvLK923NEZGRqZamyg/i4qKUseOHeXj46MVK1bY1rBKGakUHR2tEiVK2Pqn9x2dOXMmzXUL0nd0L3xPGVMY/rcEIH9gpBcAAAAKnNq1a8vBwUHHjx9XxYoV5eDgkGYtoTvXZ6pWrZouXLhgK2Dc3u/O9Ynyo9jYWD322GOKjo7WunXr5OHhYTuW8nzpfUeOjo4KCAiw9Tt69KjufAF8QfmO7ofvKWOqVauW5juKjo5WeHh4oXh+AHkHRS8AAAAUOLt27VJCQoICAgLk5OSk1q1ba/ny5an6hISEKDAwUP7+/pKk9u3by2w2a8WKFbY+kZGRCg0NVadOnXIzfrZLTExU79699eeff+qHH35Q6dKlUx0PCAhQlSpVtGzZslT7Q0JCFBwcLEdHR0lSx44dFRkZqU2bNtn6HDt2TL/99lu+/44ygu8pYzp27KiNGzcqKirKtm/ZsmUym81q3769ccEAFDom653/+QEAAADIR3r06KGGDRuqdu3acnFx0e+//65p06bJz89Pu3fvlqOjo7Zt26ZWrVppyJAh6t27t7Zs2aKJEycqJCREvXr1sl1r6NChCgkJ0YwZM1S6dGm9++67On78uA4dOpRqZFR+M2TIEM2fP1/Tp09Xs2bNUh2rV6+enJyc9PXXX+upp57S22+/rdatWyskJEQLFizQ1q1bFRQUZOv/yCOP6PDhw5o+fbqcnZ315ptvymw2a8+ePbK3z9+rp8TExGjt2rWSpI8//lh///23ZsyYIUlq2bKlfH19+Z4yIDIyUjVq1FCVKlU0ZswYnTt3TiNHjtRTTz2l2bNnGx0PQGFiBQAAAPKx9957z1q3bl2ru7u71c3NzVqjRg3r22+/bY2Ojk7V79tvv7XWqlXL6ujoaK1UqZJ14cKFaa4VFxdnffXVV61+fn5WFxcXa9u2ba1//vlnbj1KjilfvrxVUrqfsLAwW78FCxZYK1WqZHV0dLTWqlXL+t1336W5VlRUlHXgwIFWT09Pa5EiRaw9evSwnjt3LhefJueEhYXd9XvasmWLrV9h/54y4vDhw9bg4GCri4uL1c/Pz/raa69Z4+PjjY4FoJBhpBcAAAAAAAAKHNb0AgAAAAAAQIFD0QsAAAAAAAAFDkUvAAAAAAAAFDgUvQAAAAAAAFDgUPQCAAAAAABAgUPRCwAAAAAAAAUORS8AAAAUOgEBAQoICDA6Rp7Gd3R/fEf3x3cEwEgUvQAAAAAAAFDgUPQCAAAAAABAgUPRCwAAAAAAAAUORS8AAAAAAAAUOBS9AAAAAAAAUOBQ9AIAAAAAAECBY290gIKmZcuWkqSffvrJ4CQAAAAAYKzw8HCjIwAoxCh6ZbMzZ84YHSGNn/b+o1bPr7G1TSbpmUeraPKwRirt52ZgMgAAkFeYTCajIxiisD53ZvAd3R/f0b1VqFDB6AgACimT1Wq1Gh2iIAkICJAknThxwuAkt1itVq3aclKjPtqlv89ete13cbLTa0/X0ahn6qiIq4OBCQEAgNFu3LhhdIRCafOfF4yOAOSo4cOHy+7ikTz19xGAwoOiVzbLi0WvFDcTkvTx/w5pwoJ9irp207a/hI+LJr3QSAM6V5GdHcu8AQAA5JaNhyl6oWAbPHiwTOEH8+TfRwAKPiochYijg51eeaq2jq/qq5eeqCl7u+Rh2Ocvx+q5SVtVv99Kbdh51uCUAAAAAAAAD46iVyHk4+msD19tpsPLeqt7a3/b/j/+uqL2w9fq0ZfW6fCJSOMCAgAAAAAAPCCKXoVY5XIeWjmtvX6a11kNAovZ9q/dfka1n1iuYVO26eKVWAMTAgAAAAAAZA1FL+jh+iX16xfd9dWE1ipTPPltjklJVn2y/LAqdV+qKZ/vV1x8osEpAQAAAAAAMo6iFyRJZrNJ/TpV1rEVfTR5WCPb2xyv3UjQv2f/qmo9/6evfzgu3nsAAAAAAADyA4peSMXF2V5jBtbTXyv7aEj3ajKbkxe7PxV+XU++tVlNB3yjXQcvGpwSAAAAAADg3ih6IV0lirnq0zcf1u9LHleHoDK2/b8euqTmg77Vh0sOMOoLAAAAAADkWRS9cE81K3nrh1md9MOsjqoR4CUpeb2vV2bs0FNvbVb8zSSDEwIAAAAAAKRF0QsZ0iGorPYveVyjB9S17ft6/d/q/MoPuhGbYFwwAAAAAACAdFD0QobZ25v13vDGWjmtnVyd7SVJG3adU4fhaxV9/abB6QAAAAAAAG6h6IVM6966gkJnd1JRt+Q3PG7//YLaDF2jS5GxBicDAAAAAABIRtELWdK8bglt+bSzink6S5L2HYlQyyHf6dzFGwYnAwAAAAAAoOiFB1C/WjFtnd9ZpXxdJUl/hkWpxeDVOnH2qsHJAAAAAADIPuPHj5fJZLJ9nJ2dFRgYqKlTp8pisWTLPaKiomQymfT555/ft++BAwfk7u6uS5cu2fbdns/R0VFVq1bVmDFjdONG7g1O+fzzz2UymRQREZHpc9u1a6fJkydnax6KXngggRW8tG1BF1Uo7S5JCjt3TS0Gr9bhE5EGJwMAAAAAIPu4uLhox44d2rFjh9atW6devXpp9OjRmjp1aq5neeuttzRgwAD5+vqm2v/iiy9qx44dCg0NVa9evTR16lQ999xzuZ4vK8aMGaP//Oc/iozMvnoCRS88sAqli+rn+V0UWMFTkvTPpRi1HPKd9h3JfGUXAAAAAIC8yGw2q2nTpmratKlat26tCRMmqGvXrlq5cmWu5jhx4oS+++47DRw4MM2xcuXKqWnTpmrVqpUmTZqk/v37a+nSpVkaeZUiNjZ31u9u3bq1vLy89MUXX2TbNSl6IVuU9nPT1vldVL9aMUlSRFScWj//nbbtP29wMgAAAAAAcoa7u7sSEhJS7YuPj9eYMWNUvnx5OTk5KTAwUEuWLElz7vz58+Xv7y9XV1cFBwfr+PHjGbrnl19+qYCAANWrV+++fRs2bChJCgsL05EjR9S3b1+VLVtWrq6uql69uqZPn55qeubJkydtUywHDx4sHx8fNW7cWJL0/fffq127dvLz81PRokXVpEkT/fDDD+ne9/jx42rTpo1cXV3l7++vzz77LEPP1qtXr2wtetln25VQ6BXzdNbmuY/psZd/0Lb953X1RoLa/+t7fTO9g9o3LWN0PAAAAABAHhAdHa0DBw4YHUO1atWSh4dHps5JTEyUlDz6acuWLVqxYoXGjBmTqk/v3r21bds2jRs3ToGBgVq7dq369esnLy8vdezYUZK0Zs0aDRkyRAMGDFDfvn21d+9e9erVK0MZNm7cqGbNmmWob1hYmCSpVKlSOnLkiKpWraqnnnpK7u7u2r9/v8aNG6fr169r3Lhxqc7797//rUcffVRff/21rSgWFhamzp0767XXXpPZbNa6devUqVMnbd68Wa1atUp1ft++ffX888/rjTfe0NKlSzVo0CCVKlVKjzzyyD3zNmvWTFOnTtWlS5fSTN3MCopeyFYeRRy1fnYndX8tVKE7zyo2PkmdX/lBS98NVvfWFYyOBwAAAAAw2IEDB9SiRQujY+jnn3/WQw89lOH+N27ckIODQ6p9ffr00ejRo23tLVu2aPXq1Vq/fr3at28vKXmB9vDwcI0bN85W9Jo0aZJatGihRYsWSZI6dOiguLg4TZw48Z4ZrFar9uzZo27duqV73GKxKDExUXFxcdq4caM++eQTBQUFqXTp0ipdurSCg4Nt13nooYcUExOj2bNnpyl61a1bVwsWLEi1b/jw4anu07p1ax06dEjz5s1LU/R65pln9O9//9v2bCdOnNA777xz36JXnTp1JEm//vqrHn300Xv2zQimNyLbuTrba/WMDurR2l+SdDPBol6jN+qr748ZGwwAAAAAgCxycXHR7t27tXv3bm3btk0zZ87UDz/8oMGDB9v6hIaGytvbW23atFFiYqLt065dO/32229KSkpSUlKS9u7dq+7du6e6fs+ePe+bITIyUvHx8XcdBfXGG2/IwcFB7u7u6t69u4KCgmxTK+Pi4jRu3DhVqlRJTk5OcnBw0Jtvvqnw8HBdv3491XXSKzidPXtW/fv3V+nSpWVvby8HBweFhobq2LG0f+vf+WyPP/649u7dq6SkpHs+X7FiyUsmhYeH37NfRjHSCznCydFOIe+11aCJP+nL7/9SUpJVz4z7UddiEjSsVw2j4wEAAAAAkClms9m2RpYkNW/eXImJiXr11Vc1cuRI1axZUxEREbpy5UqaEWEpwsPDZW9vr8TERPn5+aU6Vrx48ftmiIuLkyQ5OTmle/yll15Sv3795OTkJH9/f7m7u9uOvfHGG5o/f77GjRunBg0ayNPTU99++60mTZqkuLg4FSlS5K5ZLBaLunTpoujoaE2YMEGVKlWSm5ubxo4dq9OnT6fJkd6zJSQkKCIi4p7PmfJc2bV4PkUv5Bh7e7MWjWsld1cHfbzssCTpX+9vl6uzvQZ0rmpwOgAAAACAEWrVqqWff/7Z6BiqVavWA18jMDBQknTo0CHVrFlT3t7e8vX11dq1a9Pt7+fnJzs7O9nb2+vixYupjl24cOG+9/P29pYkRUVFpXu8TJkyqQpzt1u2bJltna0U33//fbp9TSZTqvbx48f122+/6ZtvvlHXrl1t++9WnLp48aJKly5ta1+4cEEODg62kVx3k/JcPj4+9+yXURS9kKPMZpNmjWoudzdHTfl8vyTpuUlb5V3USV1a+huaDQAAAACQ+zw8PDK1llZedvDgQUm3puW1bdtWU6dOlaOjo2rXrn3X8+rXr69Vq1bplVdese1bvnz5fe/n7OyscuXK2Raoz4zY2Fg5Ojra2klJSVq6dGmGz5WU6vxTp05p+/btqlKlSpr+q1atSvV2yRUrVqhBgways7O7531OnjwpSapaNXsGylD0Qo4zmUx691+NdCM2QbNCDikpyao+YzYpdHYntahX0uh4AAAAhmlbvbg2Hr7/f9kHABjPYrFo586dkqSbN29q7969mjRpkqpXr66HH35YUvKi9Z07d9YjjzyiUaNGqXbt2rpx44YOHTqk48eP2xaHf/PNN9W1a1c9++yztrc3fvXVVxnK0bx5c+3duzfT+du1a6f58+erevXqKlasmObMmaP4+PgMnVutWjWVKVNGo0ePVlJSku2Nj7eP5rrdl19+KRcXF9WvX19Lly7V1q1bU40q+/LLLzVw4EBt2rRJLVu2tO3fs2ePihQporp162b6+dLDQvbIFSaTSR++2kxPdKgoSYqLT1LnV9brj78uG5wMAAAAAID7i42NVVBQkIKCghQcHKxZs2apX79+2rJlS6o1vJYvX66hQ4dqzpw56tixowYNGqTQ0NBUxZ0uXbpo7ty52rRpk7p166bQ0FCFhIRkKEfPnj21fft2Xbt2LVP5Z82apZYtW+rFF1/UoEGDVKtWLY0ZMyZD5zo5OWnlypVycnJSr169NHbsWL355pupnul2X3/9tdavX69u3bpp8+bNmjdvnjp16mQ7brFYlJSUJKvVmuq8devWqXv37vcdEZZRJuudd8ADCQgIkCSdOHHC4CR5082EJHUZuV7rd5yVJJXwcdEvn3VVhdJFDU4GAABgDEZ6oSAbPHiwTOEH+fsIyEYJCQkqV66c3n//fT3zzDNGx8k2kZGRKlGihDZs2GAbOfegGOmFXOXoYKcVU9upSc3kNzmcvxyrR15cp4ioOIOTAQAAAACQ9zk4OGj06NGaOXOm0VGy1axZs9S8efNsK3hJFL1gADcXB33/4SOq5u8pSTp2OlpdRq5XTFyiscEAAAAAAMgHhg4dqm7duikiIsLoKNnG29tbH330UbZek+mN2YzpjRl38p9rCnr2G52/nPwWiK4ty2vF1Hays6MWCwAACg+mN6IgY3ojACNRXYBh/Eu5a91HHeXulrzg37c/ndKL035Js5AdAAAAAABAZlH0gqHqVi2mlVPbyd7OJEn6ZPlhvbdov7GhAAAAAABAvkfRC4Zr26SMFo1rZWu/OWe3vlhzzLhAAAAAAAAg36PohTyhX6fKmjK8sa393MSftH7HGQMTAQAAAACA/CxPFb2OHz+uoUOHqm7durK3t1fNmjXT7bdw4UJVqVJFzs7OqlOnjtasWZOmT3R0tAYNGiRvb2+5u7urZ8+eCg8PT9Pvl19+UVBQkFxcXFS+fHm9//77rCllkFH962h47xqSpMQkqx4ftUH7jhScN1EAAAAAAIDck6eKXocOHdL333+vSpUqqXr16un2Wbp0qQYPHqw+ffpo3bp1CgoKUvfu3bVz585U/fr06aPQ0FDNnTtXixcv1tGjR9WxY0clJiba+hw/flwdOnRQyZIltWbNGr388ssaO3aspk+fnqPPifSZTCZ9+GqQurf2lyTdiE1Up5fWKezcVWODAQAAAACAfCdPFb06d+6sM2fOaPny5apfv366fcaNG6e+fftq4sSJat26tebOnatGjRppwoQJtj47duzQ+vXrtXDhQvXu3VtdunTR8uXL9ccff2jlypW2ftOmTZOPj4+WLl2q4OBgvfLKK3r11Vc1efJkxcfH5/jzIi07O7MWT2yj5nWKS5IuXI5VxxHrFHWNnwcAAAAAwBjjx4+XyWSyfZydnRUYGKipU6fKYrFkyz2ioqJkMpn0+eef37fvgQMH5O7urkuXLqXJlt7H398/WzJm1uDBgzV48GBD7i3lsaKX2XzvOCdOnNCxY8fUu3fvVPv79u2rTZs22QpV69atk6enp9q1a2frU7VqVdWtW1dr16617Vu3bp26desmR0fHVNeKiorSjh07suORkAUuzvZaPaODqvl7SpKOnorW02O3yGJh2ikAAAAAwBguLi7asWOHduzYoXXr1qlXr14aPXq0pk6dmutZ3nrrLQ0YMEC+vr567rnnbLl27NihQYMGpcq6Y8cOrVq1KtczStIbb7yhL7/8Un/99Zch97c35K5ZdOTIEUlStWrVUu0PDAzUzZs3FRYWpmrVqunIkSOqWrWqTCZTmn4p17hx44bOnDmT5lrVqlWTyWTSkSNH1KpVq5x7GNyTt4ez1s58RA2fWaUr0fFa8/NpTVywT+OGNDA6GgAAAACgEDKbzWratKmt3bp1ax04cEArV67U6NGjcy3HiRMn9N1332nv3r2SpDJlyqhMmTK24z/88EOarHeKjY2Vi4tLjmetVKmSmjdvro8//lgffvhhjt/vTnlqpNf9REZGSpI8PT1T7ffy8pIkXblyxdbvzj4p/VL6REVFpXstR0dHubq62vqlJyAg4K6fM2d442B2qVC6qL6eHCyzObl4OX7eXq35+ZTBqQAAAAAASObu7q6EhIRU++Lj4zVmzBiVL19eTk5OCgwM1JIlS9KcO3/+fPn7+8vV1VXBwcE6fvx4hu755ZdfKiAgQPXq1ctwTpPJpClTpuiNN95QiRIl5OfnJyl5eaguXbqoVKlScnNzU926dfXVV1+lOvfHH3+UyWTS2rVr1aNHD7m5ualkyZJ69913M3TvXr16afHixanWWM8t+WqkFwqf9k3L6N1hjTR69q+SpH5vb9HuL7urcjkPg5MBAAAAALIi9vpNnTt+94EmuaV0JW+5FHG8f8fbpBRuYmNjtWXLFq1YsUJjxoxJ1ad3797atm2bxo0bp8DAQK1du1b9+vWTl5eXOnbsKElas2aNhgwZogEDBqhv377au3evevXqlaEMGzduVLNmzTKVW5Jmzpyppk2bauHChbbnOHXqlJo3b66hQ4fK2dlZ27dv16BBg2SxWNS/f/9U5w8ZMkRPPPGEVq5cqY0bN+rNN9+Ut7e3hg4des/7NmvWTBEREdq/f78aNmyY6dwPIl8VvVJGdEVHR6tEiRK2/SkjwLy9vW390htxFRkZaeuTMsIrOjo6VZ+bN28qJibG1i89J06cuOuxgICADDwJMmNU/zra8+clLd8UpujrN9XttVDtXNRV7m6Z+z8nAAAAAIDxzh2/omnPrTY6hl5f0EWV6pa4f8f/d+PGDTk4OKTa16dPn1RTG7ds2aLVq1dr/fr1at++vSSpXbt2Cg8P17hx42xFr0mTJqlFixZatGiRJKlDhw6Ki4vTxIkT75nBarVqz5496tatW4Zzp/D29tbKlStTLQXVt2/fVNd++OGHdfbsWX366adpil5t2rTRtGnTbHkvXLigSZMmaciQIfdco71GjRqys7PTrl27cr3ola+mN6asv5WyLleKI0eOyNHR0VZwqlatmo4ePSqr1ZqmX8o13NzcVLZs2TTXSjnvzrW+YByTyaTPxrZU9YDkoufhE5EaOOGnND9fAAAAAAByiouLi3bv3q3du3dr27Ztmjlzpn744YdUbycMDQ2Vt7e32rRpo8TERNunXbt2+u2335SUlKSkpCTt3btX3bt3T3X9nj173jdDZGSk4uPj5evrm+n8HTt2TLP2eWRkpEaMGKHy5cvLwcFBDg4Omjdvno4dO5bm/PTynjt3TmfPnr3nfe3t7eXp6anw8PBMZ35Q+aroFRAQoCpVqmjZsmWp9oeEhCg4ONj2FsaOHTsqMjJSmzZtsvU5duyYfvvtN3Xq1Mm2r2PHjvr2229Tzb8NCQmRp6dnloYKIue4uzlq1bR2KuqWXFVfvilMU7/43eBUAAAAAIDCwmw2q2HDhmrYsKGaN2+uESNGaOzYsVq0aJEOHjwoSYqIiNCVK1dsBaSUz3PPPafExESFh4fr0qVLSkxMtK2rlaJ48eL3zRAXFydJcnJyynT+9K4/YMAAff3113rttdcUGhqq3bt3a+DAgbb73O5ueTNSzHJyclJsbGymMz+oPDW9MSYmRmvXrpWUPK/06tWrWr58uSSpZcuW8vX11fjx4/XUU0+pYsWKat26tUJCQrRr1y5t3brVdp2goCB16NBBAwcO1PTp0+Xs7Kw333xTtWvXVo8ePWz9Xn/9dS1evFhPPPGEhg0bpgMHDmjatGmaPHmyrYCGvKNKeU8tntRGnV9ZL0kaM2e36lcrpnZNy9znTAAAAABAXlG6krdeX9DF6BgqXenuyxplVGBgoCTp0KFDqlmzpry9veXr62urbdzJz89PdnZ2sre318WLF1Mdu3Dhwn3vl7IUU8rL+TLjzlFecXFxWrNmjWbMmKEXX3zRtt9isaR7/t3ylixZ8r73joqKko+PT2YjP7A8VfS6ePFimoXbUtpbtmxRq1at9MQTTygmJkZTpkzRlClTVLVqVa1atUpBQUGpzgsJCdHIkSM1ZMgQJSYmqn379po1a5bs7W89cqVKlRQaGqqRI0eqU6dO8vX11TvvvKNXX3015x8WWfJYi/IaN7i+3pm/TxaLVX3f3KQ9X3ZXhdJFjY4GAAAAAMgAlyKOmVpLKy9LGeFVrFgxSVLbtm01depUOTo6qnbt2nc9r379+lq1apVeeeUV276UQT/34uzsrHLlyiksLOwBkye/ZdJisaQa9HPt2jWtXp3+emurVq1KNcVx+fLlKlWqlMqUufdAlEuXLikmJkZVq1Z94MyZlaeKXv7+/hlap2nQoEEaNGjQPft4eHho4cKFWrhw4T37NWvWTDt37sxUThhr7OAG2nskQmt+Pq0r0fHq8foGbf+sq1yd89SvMwAAAACgALFYLLb6wc2bN7V3715NmjRJ1atX18MPPywpedH6zp0765FHHtGoUaNUu3Zt3bhxQ4cOHdLx48e1YMECSdKbb76prl276tlnn7W9vfGrr77KUI7mzZtr7969D/w8Hh4eatSokaZMmSJfX1/Z29trypQp8vDwSDOqS5I2b96s119/Xe3atdOGDRv01Vdf6eOPP7YtYv/TTz8pODhYn332mZ555hnbeXv27JEkPfTQQw+cObPy1ZpegCSZzSZ9NaG1KpfzkCTtP3ZZQyZvZWF7AAAAAECOiY2NVVBQkIKCghQcHKxZs2apX79+2rJlS6q3Oi5fvlxDhw7VnDlz1LFjRw0aNEihoaFq2bKlrU+XLl00d+5cbdq0Sd26dVNoaKhCQkIylKNnz57avn27rl279sDPtGTJElWqVEn9+/fXiBEj1LNnz1QFq9t9+umnOnbsmLp3766vvvpKEydO1LBhw2zHrVarkpKS0kyPXLdunVq0aJGhNcuym8lKpSBbpbxB8sSJEwYnKfgO/X1FTQZ8oxuxiZKkD18N0ktP1DI4FQAAQOZsPHz/NVyA/Grw4MEyhR/k7yMgGyUkJKhcuXJ6//3371qgyk4//vijWrdurd27d6thw4aZOjcxMVHlypXTlClTciXrnRjphXyrRkVvfT6ula396oc79dPef4wLBAAAAABADnNwcNDo0aM1c+ZMo6Pc15IlS1SkSBE9+eSThtyfRZCQr/VsG6A3+tfR+1/8rqQkq/qO2aSDIb3k4+lsdDQAAIB0MbILAPCghg4dqqtXryoiIsK2iH5eZDab9dlnn6V6qWBuYnpjNmN6Y+5LSrLokRfXaeOv5yRJj7epoGXvt03zOlYAAIC8gKIXChOmNwIwEtMbke/Z2Zn1xTut5O3hJElasTlMX33/l7GhAAAAAACAoSh6oUAo5eumeWNa2NrDp23XyX8e/E0WAAAAAAAgf6LohQLj8eAAPfNoZUnStRsJembcFiUlWe5zFgAAAAAAKIgoeqFA+ej15ipfsogk6effzmv6f/8wOBEAAAAAADACRS8UKB5FHPXVhNZKWcP+rU/2aP/RCGNDAQAAAACAXEfRCwVOi3olNeqZOpKkhESL+r29RXHxiQanAgAAAAAAuYmiFwqkd55vqDpVfCRJh05EaszHuw1OBAAAAAAAchNFLxRITo52WjyxtZwc7SRJHyw5oM27zxmcCgAAAACQH40fP14mk8n2cXZ2VmBgoKZOnSqLJXteoBYVFSWTyaTPP//8vn0PHDggd3d3Xbp0ybbv9nyOjo6qVKmSRowYoStXrmRLvjuzjh8/XocPH75v3+3bt6tYsWK6evVqtue4H4peKLBqVPTWlOGNbe1n3/lJ0ddvGpgIAAAAAJBfubi4aMeOHdqxY4fWrVunXr16afTo0Zo6dWquZ3nrrbc0YMAA+fr6ptr/4osvaseOHQoNDVW/fv30ySef6Kmnnsr2+0dFRemdd97JUNGrefPmqlGjhqZPn57tOe6HohcKtBF9a6p1w1KSpNPnr+uV6b8YnAgAAAAAkB+ZzWY1bdpUTZs2VevWrTVhwgR17dpVK1euzNUcJ06c0HfffaeBAwemOVauXDk1bdpUrVq10vjx4/Xss8/qhx9+UHh4eK5mvNOgQYP0ySefKCEhIVfvS9ELBZrZbNJnY1vK3c1BkrTou2P6buspg1MBAAAAAAoCd3f3NIWc+Ph4jRkzRuXLl5eTk5MCAwO1ZMmSNOfOnz9f/v7+cnV1VXBwsI4fP56he3755ZcKCAhQvXr17ts3pc/p06cznW/Hjh1q3769ihYtKnd3dzVp0kQbNmzQyZMnVaFCBUlSr169bFMqT548edcc3bp1U1RUlNauXZuhZ8wu9rl6N8AA/qXc9cErQXpu0lZJ0uDJW3Wwdi8V83Q2OBkAAAAAFD5JV6/r5uETRseQY/UA2RUtkqlzEhMTJUmxsbHasmWLVqxYoTFjxqTq07t3b23btk3jxo1TYGCg1q5dq379+snLy0sdO3aUJK1Zs0ZDhgzRgAED1LdvX+3du1e9evXKUIaNGzeqWbNmGep76tQpmc1mlS9fPlP5tm/frjZt2qhp06ZasGCBPD09tWfPHp0+fVoPP/ywVq5cqR49eujdd99V69atJUklS5a8a46iRYuqRo0a2rBhg7p27Zqh7NmBohcKhYFdq2rVjyf1/bbTunA5VsOmbFPIe8EymUxGRwMAAACAQuXm4RP6p/O/jI6hUt99LJemtTPc/8aNG3JwcEi1r0+fPho9erStvWXLFq1evVrr169X+/btJUnt2rVTeHi4xo0bZysqTZo0SS1atNCiRYskSR06dFBcXJwmTpx4zwxWq1V79uxRt27d0j1usViUmJio+Ph4bdmyRZ988omef/55lShRIlP5Ro0apUqVKmnz5s2ys0t+QVxKf+nWCLLKlSuradOm9//yJNWpU0e7du3KUN/swvRGFAomk0nz33pY3h5OkqRlG09o6fq/DU4FAAAAAMgvXFxctHv3bu3evVvbtm3TzJkz9cMPP2jw4MG2PqGhofL29labNm2UmJho+7Rr106//fabkpKSlJSUpL1796p79+6prt+zZ8/7ZoiMjFR8fHyaBexTvPHGG3JwcFCRIkXUuXNn1a5dWx999FGm8sXExGjnzp3q37+/reCVHYoVK5bra4sx0guFRslirvpk9EPq8+9NkqSXpv+iDkFl5O3BNEcAAAAAwL2ZzWY1bNjQ1m7evLkSExP16quvauTIkapZs6YiIiJ05cqVNCPCUoSHh8ve3l6JiYny8/NLdax48eL3zRAXFydJcnJySvf4Sy+9pH79+unGjRv673//qwULFujtt9/We++9J0kZymcymWSxWFSqVKn75skMJycnxcbGZus174eiFwqV3u0q6n8bTmjF5jBdiozTG7N+1fy3HjY6FgAAAAAUGo7VA1Tqu4+NjiHH6gEPfI3AwEBJ0qFDh1SzZk15e3vL19f3rgu2+/n5yc7OTvb29rp48WKqYxcuXLjv/by9vSVJUVFR6R4vU6aMrTDXsmVLXbhwQTNmzNCwYcNUtmzZDOVLSEiQ2WzWP//8c988mREVFSUfH59sveb9UPRCoTPztWYK3XVW124kaME3R9T/sSp6qG4Jo2MBAAAAQKFgV7RIptbSyssOHjwoKXnqniS1bdtWU6dOlaOjo2rXvvsz1q9fX6tWrdIrr7xi27d8+fL73s/Z2VnlypVTWFhYhvJNmzZNa9eu1X/+8x/NnDkzQ/kcHR0VFBSkL7/8Uq+++mq6UxwdHR0l3Rp5lhEnT55U1apVM9w/O1D0QqFT2s9Nk15opJf+84skaei7P2vf4h5ydMi+ucoAAAAAgILFYrFo586dkqSbN29q7969mjRpkqpXr66HH06eQdSuXTt17txZjzzyiEaNGqXatWvrxo0bOnTokI4fP64FCxZIkt5880117dpVzz77rO3tjV999VWGcjRv3lx79+7NUN+qVauqb9++WrBggcaOHZvhfFOmTFGbNm3Utm1bDRs2TF5eXtq3b5+KFSumgQMHqkSJEvL09NTXX3+tChUqyMnJSbVr15ajo6MqVaqk8uXLa9OmTamy7NmzR6+++mqGcmcXFrJHofSvXtXVIDC5En/oRKSm//cPgxMBAAAAAPKy2NhYBQUFKSgoSMHBwZo1a5b69eunLVu2pFoja/ny5Ro6dKjmzJmjjh07atCgQQoNDVXLli1tfbp06aK5c+dq06ZN6tatm0JDQxUSEpKhHD179tT27dt17dq1DPV/++23FR8fr1mzZmU430MPPaQff/xRJpNJAwYMUI8ePbRq1SqVL19eUvL6ZosWLVJYWJiCg4PVqFEj23TIxMREJSUlpcqwb98+Xbp0SY8//niGMmcXk9VqtebqHQu4gIDkOcEnTpwwOAnuZ9+RCDV6ZpUsFqucnex0KKSXAsoUNToWAAAo4DYevv+aLUBBMXjwYJnCD/L3EZCNEhISVK5cOb3//vt65plnjI6TIa+//rr27t2rzZs35+p9GemFQqt+tWIa0aeGJCkuPknD3t8masAAAAAAgLzMwcFBo0eP1syZM42OkiFXr17VggULNH78+Fy/N0UvFGoThjZUmeJukqT1O87qfxv4L1AAAAAAgLxt6NCh6tatmyIiIoyOcl+nT5/WxIkTbeue5SaKXijU3N0c9dFrzWztl6f/oqhr8QYmAgAAAADg3pycnPT222/b3hqZl9WsWVPDhw835N68vRGFXrdW/urycHmt3npK5y/H6s05u/XxGw8ZHQsAgEKPta8AAMCDYKQXCj2TyaRZo5rLzSW5BvzJ8sPadfCiwakAAAAAAMCDoOgFSCpXoojeeb6hJMlqlYZM3qqERIvBqQAAAAAAQFZR9AL+30t9a6pOFR9J0h9/XdHMrw8YnAgAAAAAAGQVRS/g/9nbmzVvTAuZTMntcZ/u1anwa8aGAgAAAAAAWULRC7hN45p+eqFndUlSTFyihk/dLqvVanAqAAAAAACQWRS9gDu8+6/GKuHjIkla8/Nprdpy0thAAAAAAAAg0yh6AXfwKOKoma81s7VH/OcXXbtx08BEAAAAAIC8Yt26derUqZN8fX3l4OCg4sWL69FHH9XXX38tiyX5hWitWrXSY489lu33HjBggGrWrJnt1y2oKHoB6ejVNkAdm5WVJJ27eENvz91jcCIAAAAAgNHGjBmjTp06ydnZWbNnz9amTZs0e/ZseXp6ql+/ftqwYUOO3v/tt9/WkiVLcvQeBYm90QGAvMhkMunjN5qrRu9lio1P0qyQQ3q6U2U1CPQ1OhoAAAAAwADff/+93nvvPY0bN07jx49PdaxXr1566aWX5ODgkKMZKlasmC3XiY+Pl4ODg8zmgj0WqmA/HfAAKpQuqrGDG0iSLBarnn/3ZyUlWQxOBQAAAAAwwowZM1SyZEm99dZb6R5v3Lix6tWrl+6xI0eOqG/fvipbtqxcXV1VvXp1TZ8+3TYdMkV8fLzeeustBQQEyMnJSWXKlNGAAQNsx9Ob3nj27Fn169dPxYoVk4uLix5++GHt3bs3VR9/f38NHz5cU6dOVfny5eXi4qIrV65k4VvIXxjpBdzDq/1qa/G6v3Tw70jt/TNCHy87rBF9mT8NAAAAAIVJYmKitm/frp49e8rePvOllHPnzqlq1ap66qmn5O7urv3792vcuHG6fv26xo0bZ+v3+OOPa/PmzRozZoyaNm2qS5cuaeXKlXe9bmRkpB566CEVKVJEs2bNkoeHh2bNmqU2bdror7/+kp+fn63vihUrVLlyZc2cOVN2dnZyc3PL9HPkNxS9gHtwsDfr0zEt1HzQaknSW5/sVq+2ASpZzNXgZAAAAACQfzV8eqXOX4417P4lfFy056seGe5/+fJlxcfHq2zZsqn2W61WJSUl2dpmszndKYPBwcEKDg62nfPQQw8pJiZGs2fPthW9NmzYoO+//15LlizRE088YTv39u07ffjhh4qKitKvv/5qK3AFBwerSpUq+s9//qOpU6fa+iYkJGjdunWFotiVgqIXcB/N6pTQc92qacE3R3TtRoJe/WCHlkwONjoWAAAAAORb5y/H6tzFG0bHyDSTyZSqvWLFCvXq1cvW/te//qXZs2enOS8uLk7vvfeeFi9erNOnTyshIcF27Pr16ypSpIg2bdokV1dX9e3bN8N5QkND1bp1a3l7eysxMVGSZGdnp5YtW2r37t2p+rZq1apQFbwkil5AhkwZ3lirtoTpcnS8vl7/twZ1rabgxqWNjgUAAAAA+VIJH5d8dX8fHx85OTnp7NmzqfYHBwfbiktdunS56/lvvPGG5s+fr3HjxqlBgwby9PTUt99+q0mTJikuLk5FihTR5cuXVbJkyTSFtXuJiIjQzp07011A/85F74sXL57h6xYUFL2ADPDxdNb7LzbRc5O2SpL+9f42/f51Tzk52hmcDAAAAADyn8xMLcwL7O3t1bx5c23atElJSUmys0v+W9DLy0sNGzaUJDk6Ot71/GXLlun555/XG2+8Ydv3/fffp+rj4+Oj8PBwWa3WDBe+vL299cgjj2jixIlpjjk5OaVqZ6aYVlDw9kYgg57tUlVBtZMr40dPRWv6f/8wOBEAAAAAILeMHDlS//zzj959991MnxsbG5uqKJaUlKSlS5em6tO2bVvFxMTof//7X4av27ZtWx0+fFiBgYFq2LBhqk+tWrUynbOgYaQXkEFms0mfjH5I9futlMVi1cSF+/REh4qqULqo0dEAAAAAADns0Ucf1ejRozV27Fjt379fffr0UcmSJRUdHa2ff/5Z58+fl7u7e7rntmvXTvPnz1f16tVVrFgxzZkzR/Hx8an6tG3bVp06ddLAgQP1999/q0mTJrpy5YqWL1+ukJCQdK87cuRILV68WC1bttRLL72kcuXK6dKlS9q1a5dKlSqlV155Jdu/h/yEkV5AJtSp4qMRfWpIkuLik/TSf34xOBEAAAAAILe89957WrNmjWJjYzVs2DC1adNGgwYN0oEDB/TZZ59p8uTJ6Z43a9YstWzZUi+++KIGDRqkWrVqacyYMWn6rVixQiNGjNCnn36qjh07auTIkSpSpMhd8/j4+Gjnzp2qW7eu3njjDbVv316vvPKKTp48qSZNmmTbc+dXJqvVajU6REESEBAgSTpx4oTBSZBTrl6/qWo9/6fwiBhJ0oaPO6ltkzIGpwIAoODZePiC0REAPKDBgwfLFH6Qv48AGIKRXkAmFS3iqPdfbGxrv/rhTiUlWQxMBAAAAAAA7kTRC8iCpzpWVoPAYpKkP/66oi/WHDM4EQAAAAAAuB1FLyALzGaTZrwSZGu/OWe3rsckGJgIAAAAAADcjqIXkEUP1y+p7q39JUnnL8dq2le/GxsIAAAAAADYUPQCHsD7LzaRvZ1JkjTty9919sJ1gxMBAAAAAABJsjc6AJCfVS7noeG9a+jDrw8qNj5Jb87ZrS/eaW10LAAAcg1vWAQAAHkVI72AB/T2c/XlVdRJkvTl939p75+XDE4EAAAAAAAoegEPyNvDWWOfq29rv/rBTlmtVgMTAQAAAAAAil5ANhjWq7oqlS0qSfppX7hW/3TK4EQAAAAAABRuFL2AbODoYKepI5rY2q9/tEs3E5IMTAQAAAAAQOFG0QvIJt1a+evh+iUlSX+djtYnyw8bnAgAAAAAgMKLoheQTUwmk6a/3NTWfmf+Pl2JjjMwEQAAAAAAhRdFLyAbNazuq6c7VZYkRV6N16SFvxmcCAAAAACAwomiF5DNJg9rJBcnO0nS7P8d0vEz0QYnAgAAAACg8KHoBWSzsiWK6NV+tSVJCYkWjZ27x+BEAAAAAAAUPhS9gBww6pk6KubpLElaGvq3Dp+INDgRAAAAAACFC0UvIAe4uzlq1DN1JElWqzRh/l6DEwEAAAAAULhQ9AJyyLBe1eXn7SJJ+t/GEzr09xWDEwEAAAAAUHhQ9AJyiJuLQ6rRXu/M32dwIgAAAAAACg+KXkAOeqFndRX3SR7ttWzjCR04zmgvAAAAAAByA0WvQiI66pq2b9yrrz7+1ugohYqrs73e+P/RXhJrewEAAAAAkFvsjQ6AnDfuhY91freDrd35iavy9C5qYKLCZejj1TX1y991/nKslm8K0x9/XVbtyj5GxwIAAAAAoEBjpFchUKykR6r2H7uPGpSkcHJxttcb/eva2u/MY7QXAAAAAAA5jaJXIVCpRtlU7WMHThoTpBB7vkegShZzlSSt3HJS+49GGJwIAAAAAICCjaJXIVCrQdVU7dPHLxiUpPBycbbX6AF1bW3e5AgAAAAAQM6i6FUIlCrnp5tJsbZ2xLlrBqYpvIZ0r6ZSvsmjvb758aR+O8JoLwAAAAAAcgpFr0LAbDYrwXzd1r5xJcHANIWXs5O9/n3baK/xrO0FAAAAAECOoehVSNi7WWzbSbEO9+iJnPRct2oq7ecmSVq99ZQOn4g0OBEAAAAAAAUTRa9Cwr2Yo23bSe6yWCz36I2c4uxkr9f61ba1P/z6gIFpAAAAAAAouCh6FRLFy3rYtu3Njjr+5ykD0xRuA7tUlbtb8mi7r9b+pYioOIMTAQAAAABQ8NgbHQC5o3yVkjqz/dZbGw/tO64qNSoYmKjwKlrEUc91raYPlhxQXHySPl1xWG8Oqm90LAAAsqRt9eKG3HfjYd5GDQAA7o2RXoVEtTqpC1wn/jxrUBJI0ot9ashsNkmSPl52WDcTkgxOBAAAAABAwULRq5CoUa+yLNZb63iFn7xiYBpUKF1U3VqWlySFR8QoJPRvgxMBAAAAAFCw5Mui1+rVq9WkSRO5u7urZMmS6t27t06cOJGm38KFC1WlShU5OzurTp06WrNmTZo+0dHRGjRokLy9veXu7q6ePXsqPDw8Nx4jV7m6uSjectXWjroQa2AaSNIrT91a0P6DJQdktVoNTAMAAAAAQMGS74peP/74o7p3767q1atr1apV+vDDD/X777+rffv2io29VchZunSpBg8erD59+mjdunUKCgpS9+7dtXPnzlTX69Onj0JDQzV37lwtXrxYR48eVceOHZWYmJjbj5bjrI7xtu34axRYjNa8TnE1rO4rSfrt6GVt3Vfwiq0AAAAAABgl3y1kv3TpUpUvX16fffaZTKbkNZH8/PzUpk0b7dmzRy1atJAkjRs3Tn379tXEiRMlSa1bt9Yff/yhCRMmaO3atZKkHTt2aP369Vq/fr3at28vSapataoCAwO1cuVK9e7d24AnzDnOHibp/2c1mhNcjA0DmUwmvfJkLT311mZJyaO9WjYoZXAqAAAAAAAKhnw30ishIUHu7u62gpckeXh4SJJtetiJEyd07NixNEWrvn37atOmTYqPTx7xtG7dOnl6eqpdu3a2PlWrVlXdunVthbGCxLuEm23b2a6ooqOuGZgGktSrbYBK+bpKklZvPaW/z169zxkAAAAAACAj8l3Ra8CAATp8+LDmzJmj6OhonThxQmPGjFG9evXUvHlzSdKRI0ckSdWqVUt1bmBgoG7evKmwsDBbv6pVq6YqoKX0S7lGegICAu76OXPmTHY+brYqFVAsVfvgnmMGJUEKB3uzhveuIUmyWqWPlh40OBEAAAAAAAVDvit6tWjRQqtWrdLo0aPl6empihUr6sKFC1q3bp3s7OwkSZGRkZIkT0/PVOd6eXlJkq5cuWLrd2eflH4pfQqSStXLpGr/uT/t4v/Ifc/3CJSLU/Lv7merjyr6+k2DEwEAAAAAkP/lu6LXL7/8oqefflqDBw/W5s2btWzZMlksFj366KOpFrLPSSdOnLjrp2zZsrmSISsaNK+Zqn1k32mDkuB23h7O6v9YFUnS9ZgELfjm7qMMAQAAAABAxuS7oteIESPUpk0bTZ8+Xa1bt1bPnj31/fffa9++ffrqq68k3RrRFR0dnerclBFg3t7etn539knpl9KnIClR2lcxllsj2C6evGFgGtzu5Sdq2bY/WnpQiYkWA9MAAAAAAJD/5bui1+HDh1W3bt1U+8qUKaNixYrp77//lnRrLa871+U6cuSIHB0dFRAQYOt39OhR2wL4t/e7cz2wgsLRK9G2bY4tIouF4kpeUNXfU52aJ48SPH3+ulb9eNLYQAAAAAAA5HP5ruhVvnx57du3L9W+U6dOKSIiQv7+/pKSF5qvUqWKli1blqpfSEiIgoOD5ejoKEnq2LGjIiMjtWnTJlufY8eO6bffflOnTp1y9kEMUraql23bya6I/thz1MA0uN0rT94a7fXpyj8NTAIAAAAAQP6X74peQ4cO1TfffKOXXnpJGzduVEhIiB577DH5+fmpd+/etn7jx4/XkiVLNG7cOP3444964YUXtGvXLr399tu2PkFBQerQoYMGDhyoZcuW6bvvvlPPnj1Vu3Zt9ejRw4jHy3ENHg5M1d62ft9deiK3BTcurUpli0qSNv16Tn+fvWpwIgAAAAAA8q98V/QaMWKEPvnkE/3444/q1q2bXn75ZVWuXFk//vijfHx8bP2eeOIJzZ8/X0uWLFGHDh20fft2rVq1SkFBQamuFxISonbt2mnIkCF68sknVblyZa1du1b29va5/Wi5olXHJrJYk2zto/vOGpgGtzOZTBrc7da0Wha0BwAAAAAg60zWOxe0wgNJWS/sxIkTBie5u34NJ8tNvpKkGPMFffXr2/c5A7nl4pVYlem0WAmJFhX3cdGZ75+Sg32+q00DAJDjNh6+YHQEABkwePBgmcIP5um/jwAUXPw1XQi5+d7adkj0VMLNBOPCIBU/bxd1bVleknThcqy+23rK4EQAAAAAAORPFL0KoYBaJWzbDmYn7diy37gwSGNI91vrrs1bxYL2AAAAAABkBUWvQqhpm5qp2r9s/N2gJEhPcOPSqlDaXZIUuvOsTv5zzeBEAAAAAADkPxS9CqFmbeorISnO1v5rb7iBaXAns9mk57omL2hvtUoLv2VBewAAAAAAMouiVyHk4OigJLcoWzsx0k2JiUl3PwG57tkuVWVnZ5Ikfbb6qBITLQYnAgAAAAAgf6HoVUhVrHdrNXtnuyL6ce1OA9PgTiWLuarLw8kL2v9zKUZrt582OBEAAAAAAPkLRa9CqmOf5qnam1btNigJ7mZwt2q27XmrmOIIAAAAAEBmUPQqpBo9VFsxSZG29tnDLJae17RvWkblShSRJP2w44zOR8QYnAgAAAAAgPyDolch5loi0bbtlOCtKxHRBqbBnezszHq6U2VJUlKSVYt/OG5wIgAAAAAA8g97owPAOPVbVdK+ZcmFLjuzg775aqMGvvK4walwu2cerazJn/0mSfpizTGNfKqWTCaTwakAADBe2+rFjY6QJRsPXzA6AgAAhQYjvQqxrv3ayGK99dbG3RuPGpgG6alS3lNBtZP/pf7A8Svaf/SywYkAAAAAAMgfKHoVYiVK+yrOLsLWjvnHSYmJSfc4A0bo/2hl2/YX3x8zMAkAAAAAAPkHRa9CrmJDb9u2s527vv3vRgPTID192leUk6OdJGnxuuO6mUBhEgAAAACA+6HoVcg98UJHWa0WW3vT8n0GpkF6PN2d1K1leUlSRFSc1m0/Y3AiAAAAAADyPopehVzVWgGKtbtka98456iEmwkGJkJ6+j9WxbbNFEcAAAAAAO6PohdUsZGPbdvZzl3fLN5kYBqkp12TMirh4yJJWvPzaV2OijM4EQAAAAAAeRtFL+jJYamnOG5mimOeY29vVr9OyQvaJyRa9PX64wYnAgAAAAAgb6PoBVWpUSHVFMfYf1x0/VqMgYmQnv6P3j7F8S8DkwAAAAAAkPdR9IIkKfCh4rZtJzs3ff7hKgPTID01K3mrfrVikqQ9hy/pz7BIgxMBAAAAAJB3UfSCJOm51x9XoiXe1v517QkD0+Bunnm0sm178TqmOAIAAAAAcDcUvSBJ8ivpI5NPtK3tfNNXB/YeNTAR0tOnXUWZzSZJ0pL1x2W1Wg1OBAAAAABA3kTRCzaPPtPEtm0ymfXFjDUGpkF6ShRzVXCjUpKksHPXtPPARYMTAQAAAACQN1H0gk3Xp4IVY7lia188bFF83E0DEyE9T3W8fYojC9oDAAAAAJAeil6wMZvNKlff1dZ2sfPQwunLDUyE9HRv5S9nJztJ0v82nlBCosXgRAAAAAAA5D0UvZDKC2/1VqLl1uiuHd/+bWAapKdoEUd1blFeknQpMk6bfj1ncCIAAAAAAPIeil5IpYx/CdkXv7WgvauluDZ8u83AREjPEx0q2raXb+JNmwAAAAAA3ImiF9LoN7JDqnbIrB8NyYG7eySorNxc7CVJ3/x4UolMcQQAAAAAIBWKXkijRbuGirW/cGvHFS8dPcBoorzExdlejz5UTpJ0OTpeP+0LNzgRAAAAAAB5C0UvpKt13+q2bTuzg2a9/T8D0yA9PYMDbNtMcQQAAAAAIDWKXkhX/xHddcMaYWvHnHbTmbB/DEyEO3VsVlYu//8Wx5VbTiopiSmOAAAAAACkoOiFdJnNZjXqXNbWdjA76YMxSwxMhDsVcXVQx2bJP6OLV2K1bf95gxMBAAAAAJB3UPTCXQ0b01cxSZG2duQRe10Mv2xgItwp9RTHMAOTAAAAAACQt1D0wl05ODqoehtvW9vRzlXTXv/CwES406MPlZOTY/IUxxWbw2SxWA1OBAAAAABA3kDRC/f04vinFJsUbWtHHLLT2ZNMo8srihZxVIemZSRJ4REx2vHHhfucAQAAAABA4UDRC/dUxN1V1YM9bW1HOxf95/UvjQuENHoGV7Bt8xZHAAAAAACS2RsdAHnfyxOf0eBmH8rVzkuSdO1vF/195JQqVitvcDJIUueHy8vB3qyERIuWbw7T9FeCZDabjI4FAADS0bZ6caMjZNrGw4wkBwDkT4z0wn05uzip/mMlbG17s5M+Hr/MwES4nae7k9o2Li1JOnvhhnYfvmRwIgAAAAAAjEfRCxky/O0nFWO5YmtfPmrW9WsxBibC7ZjiCAAAAABAahS9kCEOjg6q1MzD1na2K6J5U/5nYCLcrmtLf9uUxjU/nzY4DQAAAAAAxqPohQwb9nYfJSTF2dr71p81MA1u5+PprKBafpKkIyej9PfZqwYnAgAAAADAWBS9kGG+xb3lXOaGre0mP323dLOBiXC7x1rcerHA99sY7QUAAAAAKNwoeiFTBrzeKVX72wW/GJQEd3r0oXK2bYpeAAAAAIDCjqIXMqXxw3UU63DrtdXWKx46f463BeYFNSt6qVyJIpKkH/f+o+sxCQYnAgAAAADAOBS9kGlNH6to27Y3O2nBtJUGpkEKk8lkG+11M8Gijb+eMzgRAAAAAADGoeiFTBvwcnfFJ123tY9sizAwDW73GFMcAQAAAACQRNELWeDq5iJ3/1tT59zkq42rtxuYCClaNywlFyc7SclFL6vVanAiAAAAAACMQdELWfLEi+1StZfP/cmgJLidi7O92jQqLUkKj4jRb0cvG5wIAAAAAABjUPRCljRrU18x5lsL2t8ML6JLF64YmAgpbp/iuObnUwYmAQAAAADAOBS9kGX12t8qrjjYOeuTSSEGpkGKTqzrBQAAAAAARS9k3ZA3einutgXt/9oeJYvFYmAiSFK5EkVUu7K3JOnXQ5d04XKMwYkAAAAAAMh9FL2QZUXcXeVdOcnWdjX76H8L1xmYCCkevW2017pfzhiYBAAAAAAAY1D0wgMZ9O+uslhvFb5++HKvgWmQIvW6XkxxBAAAAAAUPhS98EBq1quiBLcIW9sxxk+7t/1hYCJIUpOafvLxcJIkhe46q8REpp0CAAAAAAoXil54YJ0HNrZtm0xmLZj8nYFpIEl2dma1a1JGknTtRoJ2H75kcCIAAAAAAHIXRS88sO7PtNMN00VbO+mCp/4+csrARJCk4Malbdubfj1nYBIAAAAAAHIfRS88MLPZrId6VLK17cwOmj3ufwYmgiS1va3otZGiFwAAAACgkKHohWwx6NXHFWO5YmtHHXPQ5YuRBiaCfyl3VSxTVJL0yx8XdCM2weBEAAAAAADkHopeyBYOjg4KbOVtazvauWrm2MUGJoIkBTcqJUlKSLRo2/7zBqcBAAAAACD3UPRCtnlx3FOKS7pma5/cFau42HgDE6Ht/y9mLzHFEQAAAABQuFD0QrZx93BTidq3fqVc7Dz0ybtLDUyE1g1LyWRK3t64i6IXAAAAAKDwoOiFbDVi4pNKsMTZ2nvXnpPFYjEwUeFWzNNZ9aoWkyTtP3ZZlyJjDU4EAADym7bVixsdAQCALKHohWxVulxxuZaLsbXdTMX02YwVBiZCyrpekrRlzz8GJgEAAAAAIPdQ9EK2Gzquh5Isibb2j18fY7SXgVjXCwAAAABQGNln9oSYmBht2LBB27dv1+HDhxURESGTyaRixYopMDBQzZs3V9u2beXm5pYTeZEP1KxXRfYllst6MXlanZvJVwv+s0xDRvUxOFnh9FDdEnJ0MOtmgoWiFwAAAACg0MjwSK8DBw5owIABKlGihLp3766PP/5Yx48fl8lkktVq1bFjxzR79mx1795dJUqU0IABA3TgwIGczI48bMS7vZRkSbC1t4YcZ7SXQVyd7dWsdvJaHGHnrunE2asGJwIAAAAAIOdlqOjVp08f1atXT0eOHNH48eP1+++/6+rVqzpy5Ih27NihnTt36ujRo7p27Zp+//13jR8/XkePHlW9evX0xBNP5PQzIA+qXreyHEpG29puJl/Ne/9/BiYq3No2Lm3b3rSb0V4AAAAAgIIvQ0Uvs9msPXv2aOfOnRo5cqRq1aolOzu7NP3s7OxUq1Ytvfrqq9qxY4f27NmT7YGRf4x4r0+q0V7blp9QYmKSgYkKL9b1AgAAAAAUNhkqen399deqW7dupi9et25dff3115k+DwVDYO2Kcix1ayqdm6mY5r0fYmCiwqtBtWLyKOIoSdr06zlZLFaDEwEAAAAAkLN4eyNy1Evv9VGi5aat/cuKk4z2MoC9vVmtGpSUJF2Ojtcff102OBEAAAAAADkr029vvN3p06d14sQJRUZGympNO3KkR48eD3J5FABVawXIqcw1Jf3jI0lyMxfT3PeWavjbTxmcrPAJblRa3/50SpL0495w1a1azOBEAAAAAADknCwVvU6fPq2BAwdqy5YtkpRuwctkMikpiRE9kF5+r6/ef/p72ZuTp9ftXHVaQ/+dJHv7tOvCIee0aljKtv3j3n/08pO1DEwDAAAAAEDOylLRq3///tqxY4dGjx6tJk2ayMPDI7tzoQCpUqOCXMpdV8JZb0mSm9lHcyYv0YhxTxucrHCpEeAlHw8nXY6O19bfzstiscpsNhkdCwAAAACAHJGlotfOnTv1xhtv6J133snuPCigXpnyhN598jvbaK/d355Vwr8T5ODoYHCywsNsNqll/ZJaueWkIq8mr+vFFEcAAAAAQEGVpYXsy5QpIy8vr+zOggKsYrXyci1/w9Z2Nfto9sQlBiYqnFo1uH2KY7iBSQAAAAAAyFlZKnq99tprWrhwoWJiYrI7DwqwV95/UomWeFt73/fhSriZYGCiwufOdb0AAAAAACiosjS98fnnn1dSUpIqV66snj17qkyZMrKzS70ouclk0iuvvJItIVEwBFQpK7cKMYo/5SRJcjV7a9Y7izVy8gBjgxUirOsFAAAAACgsslT0OnjwoKZOnarw8HDNmjUr3T4UvZCeV6f20zu9VsrBnFz4+m3tecW/fVNOzo4GJyscWNcLAAAAAFBYZGl645AhQxQdHa1PP/1U+/fvV1hYWJrPiRMnsjsrCoDyFUvLPSDW1na1Sx7thdxz+7pem3YzxREAAAAAUDBlqei1f/9+jRkzRoMHD1bt2rVVvnz5dD9Ael6b1k8Jljhb+/cfLiouNv4eZyA7BTcubdvesOusgUkAAAAAAMg5WSp6VahQIbtzoBApW6GUPCrdKnK52nlp+pgvDExUuARW8FRpPzdJ0tZ94YqLTzQ4EQAAAAAA2S9LRa933nlHH3/8sc6cOZPdeTLsiy++UL169eTs7KxixYqpY8eOio29NW3uu+++U506deTs7KwqVapo0aJFaa5x8+ZNvf766ypRooTc3NzUrl07HT16NDcfo9B67T/P6GbSrbd/Hv3xqqKjrhmYqPAwmUxq3yR5tFdsfJK2/37B4EQAAAAAAGS/LC1kv3XrVnl6eqpq1apq27atypYtm+7bG2fOnJktIe80efJkvf/++xozZoyCgoIUERGhTZs2KSkpSZK0bds2de/eXc8995w+/PBDbd68WYMGDZK7u7t69uxpu86IESO0dOlSzZgxQ6VLl9bkyZMVHBysQ4cOycPDI0eyI1npcsXlV9uqqEPJbRe7opr2+ueaNP9FY4MVEu2alNGi745JkkJ3nk015REAAAAAgILAZLVarZk9yWy+/wAxk8lkK0Jlp6NHj6pmzZpavXq1OnbsmG6fDh066Pr169q+fbtt35NPPqn9+/fr8OHDkqSzZ8/K399fc+bM0ZAhQyRJV65cUbly5TR27FiNGjUqS/kCAgIkiYX8M+BKRLReabdQznZFJEnxSTc07Yf+8i3ubXCygu9SZKz82n0lSapX1Uf7Fj9ucCIAAJCXbTzMyHBkzeDBg2UKP8jfRwAMkaXpjRaL5b6fnCh4SdKiRYtUoUKFuxa84uPjtWXLFvXq1SvV/r59++rPP//UyZMnJUmhoaGyWCyp+nl7e6t9+/Zau3ZtjmRHat7FPOTf1MnWdrJz09RXPzcuUCHi6+Wi+tWKSZJ+O3pZF6/E3ucMAAAAAADylywVvYy0c+dO1apVS5MmTZKfn58cHR3VvHlz7dq1S5L0999/KyEhQdWqVUt1XmBgoCTpyJEjtn/6+fnJy8srTb+UPsh5r099VrFJ0bZ2xCE7nQn7x8BEhUe7JremNG789ZyBSQAAAAAAyH4ZWtMrJiZGrq6uWbrBg5ybnvPnz2vv3r06cOCA5syZI1dXV7377rtq3769/vrrL0VGRkqSPD09U52XUty6cuWKJCkyMjJNn5R+KX3uJmUKY3rOnDmjsmXLZuKJCrci7q6q3tZLYVsskiRHOxdNe+0rfbTiDYOTFXztm5bR+1/8LknasOusnnykksGJAABAXtW2enGjI6TCdEsAQEZkaKRX2bJlNWHCBIWHh2f4wufOndPYsWNVrly5LIdLj8Vi0fXr17V8+XL17NlTnTp10urVq2W1WjV79uxsvRdyxysTn1GM5Vah8UaYm/78428DExUOzeuUkItT8gsoQneeVRaW9wMAAAAAIM/K0EivTz75ROPHj9eECRPUvHlztW3bVvXr11eFChXk5eUlq9WqyMhIhYWFac+ePdq4caN27typypUra86cOdka2MvLSz4+Pqpdu7Ztn7e3t+rVq6dDhw6pb9++kqTo6OhU56WMAPP29rZd584+Kf1S+tzNvRZhvNcoMKTPydlRjbqW1qHvkteVsjc7avqrX2vBhrcMTlawOTnaqWWDUvrhlzP651KMDp+IVI2KvEQAAAAAAFAwZGikV+/evXXw4EEtX75cXl5emjx5sjp37qxatWqpTJkyKlu2rGrXrq0uXbpoypQp8vb21vLly3Xo0CH17t07WwPXqFHjrsfi4uJUsWJFOTg4pFmXK6WdstZXtWrVdOHCBVsx7PZ+d64Hhpw37M0ndUOXbG3zlWLauHr7Pc5Admh/27peG3axrhcAAAAAoODI8EL2ZrNZ3bp10zfffKPo6Ght27ZN8+fP15QpUzRlyhTNnz9f27ZtU3R0tFavXq1u3brJbM7+dfIfe+wxXb58Wfv377ftu3z5svbt26cGDRrIyclJrVu31vLly1OdFxISosDAQPn7+0uS2rdvL7PZrBUrVtj6REZGKjQ0VJ06dcr23Lg3e3s7df1XA1vbZDLri3c3y2KxGJiq4GvftIxtO3TnWQOTAAAAAACQvUzWfLaQj8ViUdOmTXXlyhVNnjxZLi4ueu+99/TXX3/p4MGDKlGihLZt26ZWrVppyJAh6t27t7Zs2aKJEycqJCREvXr1sl1r6NChCgkJ0YwZM1S6dGm9++67On78uA4dOiQPD48s5UuZ3nivKZC4uwEtJsgptoSt3bSfj559+XEDExVsVqtVZTot1j+XYuTiZKfILQPk5GhndCwAAIB7YiH7/GPw4MEyhR/k7yMAhsj+oVg5zGw2a+3atQoKCtLzzz+vvn37qmjRotq6datKlEguljz00ENauXKltm3bpg4dOmjJkiVasGBBqoKXJM2cOVODBg3S6NGj1a1bNzk4OGjjxo1ZLnjhwQ2d1EUWa5KtvfnLY4qPu2lgooLNZDKpXZPk0V6x8Un65Q/+BRIAAAAAUDDku5FeeR0jvR7csMfeU9J5H1u77ENWvfXh8wYmKtiW/HBcT721WZI0ekBdvTe8scGJAAAA7o2RXvkHI70AGCnfjfRCwffGzGd0MynW1v7rpxu6GH7ZwEQFW9vGtxaz3/gri9kDAAAAAAoGil7Ic8pXLK0S9W61ne2K6L2XPjMuUAHn5+2imhW9JEn7jkQo+jrTSQEAAAAA+R9FL+RJYz54TrFJUbb21eMuOvjbMeMCFXCtG5aSJFksVv38W7jBaQAAAAAAeHAUvZAnuXu4qX7nW29xtDc76sPX/mdgooKtVYNStu0te/4xMAkAAAAAANkjy0Wv06dPa+jQoapataq8vb21detWSVJERIRGjBih3377LdtConAaMb6fbuiirW0X7af1q342MFHB1bJ+SZlMyds/7mWkFwAAAAAg/8tS0evw4cOqV6+eQkJCVKFCBUVHRysxMVGSVKxYMW3btk2zZ8/O1qAofMxms7oPb5Rq33/f+1EWi8WgRAWXj6ezaldOfmPmb0cjFHk13uBEAAAAAAA8mCwVvUaNGiVPT08dO3ZM//3vf2W1WlMdf/TRR/Xzz4zIwYN7fEAHxbveeiW1q6W4Zk1YbGCigqt1g5KSJKtV2rqP0V4AAAAAgPwtS0WvrVu36oUXXpCvr69MKXOiblOuXDmdO3fugcMBkvTS1MeVZEmwtfd+e15XIqINTFQw3b6u1497WdcLAAAAAJC/ZanoZbFY5Orqetfjly5dkpOTU5ZDAber17S63CvF2Noudh6aNHy+gYkKpodvW9drC+t6AQAAAADyuSwVverXr6/vv/8+3WOJiYlaunSpmjZt+kDBgNu9PWeIYpOu2trRx5y1/9c/DUxU8HgVdVLdKsnrev3x12VFX79pcCIAAAAAALIuS0Wvf//73/rhhx/0wgsv6ODBg5KkCxcuaOPGjWrfvr3+/PNPjR49OluDonDzLuaheo/52tr2Zkd9+NpyAxMVTM3rlJCUvK7XzgMX7tMbAAAAAIC8K0tFr44dO+rzzz9XSEiI2rRpI0nq16+f2rdvr3379unLL7/Uww8/nK1BgZfeeVo3TBdtbaeY4lo6P/0Rh8ia5nWK27a37T9vYBIAAAAAAB6MfVZPfPrpp9WjRw+Fhobq+PHjslgsqlixojp06CB3d/fszAhIksxms54e01IrJh2SyZRcr13zye/q/nQ7OTk7GpyuYHiobgnb9vbfGekFAAAAAMi/slz0kiQ3Nzd17949u7IA99WhewutmLtVupw81dHNXEzvvbpA4z8eZnCygqFM8SIqV6KITp+/rl0HLyoh0SIH+ywNCAUAAAAAwFAZKnqdPn06SxcvV65cls4D7mXM7P56p/cKOdq5SJJO/XJTZ8L+UdkKpQxOVjA8VLeElvxwXDFxidp/NEKNavgZHQkAAAAAgEzLUNHL399fJpMp0xdPSkrK9DnA/fhXLqOyje10YW9y29HOVZP/9bnmrh1jbLAConmd4lryw3FJyVMcKXoBAAAAAPKjDBW9Pvvss1RFL4vFopkzZ+rUqVN66qmnVLVqVUnSkSNHtGTJEvn7+2vEiBE5kxiQNObDwRrcfIZczT6SpKQL3lq/6md16N7C4GT5X8obHCVp++/n9fKTtQxMAwAAAABA1mSo6DVgwIBU7cmTJysuLk7Hjx+Xj49PqmPjx4/XQw89pPPnefMbco6zi5M6PFdDP3+W/HtmNpn11eSf1ObRpnJwdDA4Xf5Ws6KXiro56OqNBG3bf15WqzVLIz0BAAByStvqxe/fKQs2HuZFPgBQkGRpheq5c+dqyJAhaQpekuTr66vBgwfrk08+eeBwwL30G9ZFN91u/YuJm/w05bWFBiYqGOzszAqqnfwvkucvx+r0+esGJwIAAAAAIPOyVPS6fPmyYmJi7no8JiZGly9fznIoIKNGzXpSCZY4W/vEz/H668+TxgUqIBrfto7X7kOXDEwCAAAAAEDWZKno1bRpU3344Yfau3dvmmN79uzRzJkz1aRJkwcOB9xPYO2KKtPo1q+xo52LpvzrKwMTFQyNqvvatn89dNHAJAAAAAAAZE2Wil6zZ8+W2WxW48aN1bx5cw0YMEADBgxQ8+bN1aRJE5nNZs2aNSu7swLpenPmEN2w3hqNZH+1uL6et8bARPnf7UWv3YcZ6QUAAAAAyH+yVPSqXr26Dhw4oBEjRujy5csKCQlRSEiILl++rJdeekkHDhxQjRo1sjsrkC4nZ0f1fq2prFaLbd/auQd1/drdp+Di3koUc1XZ4m6SpD1/RigpyXKfMwAAAAAAyFuyVPSSpOLFi+uDDz7QkSNHFBsbq9jYWB05ckQzZsxQiRIlsjMjcF9dngiWyffWOnKuZm9N+NenBibK/1JGe12PSdDRU9EGpwEAAAAAIHOyXPQC8pq35w5SfNKtNw1ePuigfTsOGpgof2t0+2L2THEEAAAAAOQz9lk5aeDAgfftYzKZtHDhwqxcHsiSMv4lVPMRL/21IUGSZG921IevrtTn26rLbKa+m1mNa6RezL7/Y1UMTAMAAAAAQOZkqei1efNmmUymVPuSkpIUHh6upKQk+fr6ys3NLVsCApkxcnJ/9d80Wa6W4pIkl5slNPe9pRr25pMGJ8t/GgTetpj9IUZ6AQAAAADylywNfzl58qTCwsJSfU6fPq2YmBh99NFHcnd316ZNm7I7K3BfZrNZQyZ3lMWaZNu3a3m4zp+jaJNZHkUcVbW8hyRp/7HLir+ZdJ8zAAAAAADIO7J1zpeDg4OGDx+u9u3ba/jw4dl5aSDDWrRrKLeAa7a2s527xg+eb2Ci/Kvx/6/rlZBo0YHjVwxOAwAAAABAxuXIQkd16tTR1q1bc+LSQIa8M/8FxSRF2tqWC9765r8bDUyUP9WvVsy2/dvRCAOTAAAAAACQOTlS9NqwYYNcXV1z4tJAhnh4uqvj0Oq2tslk1vIZuxVzI9bAVPlPvao+tu3fjl42MAkAAAAAAJmTpYXsJ0yYkO7+qKgobd26Vfv27dPo0aMfKBjwoJ58vrM2/2+S7KKTp+i5mX00/oW5mvrlKwYnyz/qVLlV9Np/jKIXAAAAACD/yFLRa/z48enu9/LyUsWKFTV37lwNHjz4QXIB2eLtec9qXM//ycku+W2iVw466tetv6vxw3UMTpY/eLo7qUJpd4Wdu6bfj11WUpJFdnY5MkAUAAAAAIBslaWil8Viye4cQI4oX7G0anX01LHQBEmSndlBs15brc+2VZeDo4PB6fKHelV8FHbummLiEvXXmauq5u9pdCQAAAAAAO4rS0M2tm7dqkuXLt31eEREBAvZI894ZVJ/xdhfsLVdLcU1dugcAxPlL3Wr3lrMfj+L2QMAAAAA8oksFb1at26tDRs23PX4pk2b1Lp16yyHArKT2WzWKx90V4Ilzrbv0n4HbVy93cBU+QeL2QMAAAAA8qMsFb2sVus9j8fHx8vOzi5LgYCcUD+opqq2dbO17cz2+mLcNv195JSBqfKHereP9GIxewAAAABAPpHhNb1Onz6tkydP2tpHjhxJdwpjVFSUPv30U5UvXz5bAgLZ5fUpz2pgq8lyiikuSXK189K4pxbr/VWDVLpccYPT5V2lfF3l6+WsS5Fx+u1ohKxWq0wmk9GxAAAAAAC4pwwXvRYtWqR33nlHJpNJJpNJkydP1uTJk9P0s1qtsrOz06effpqtQYEHZTabNfGLQRrT4yu52nlJktxMxfTG4/M18/t/ycfPy+CEeZPJZFLdKj7asOucLkXG6Z9LMSrt53b/EwEAAAAAMFCGi169e/dWzZo1ZbVa1bt3b40YMUItWrRI1cdkMsnNzU1169ZV8eKMnEHeU7ZCKb36aRfNeH6NXOw8JEluVj+93Hm25oSOlLsHxZz01KtaTBt2nZMk/XY0gqIXAAAAACDPy3DRKzAwUIGBgZKSR309/PDDqlChQo4FA3JK3caBGjo9VvNe/VFOdkUkSa5JxTX80emat3G0nJwdjQ2YBzUIvLWu1+7Dl/RYC6YvAwAAAADytiwtZN+/f38KXsjXmrWpr37vNNHNpFjbPue4EhrRfZosFouByfKmxjX8bNu7Dl40MAkAAAAAABmToZFeAwcOlMlk0rx582RnZ6eBAwfe9xyTyaSFCxc+cEAgp7Tt0lzXr8bquxl/yt7slLzzkq/eHPSR3lv0sqHZ8pryJYvIz9tFF6/E6tdDl1jMHgAAFEhtqxesJVo2Hr5gdAQAMFSGil6bN2+W2WyWxWKRnZ2dNm/efN8/ePmDGPlBt35tFRkRrV++uiizyU6SdOWAq2aO/0ovjX/a4HR5h8lkUpMavvru59OKvBqvv05Hq0p5T6NjAQAAAABwVxkqep08efKebSA/e/blx3Xu5Kc6s+3WvgOrr2pZ+R/U69lHjAuWxzSp6afvfj4tKXmKI0UvAAAAAEBelqU1vU6fPq3Y2Ni7Ho+NjdXp06ezHArIbW99+LycykfZ2nZmB6396Ii2b9xrXKg8pklN1vUCAAAAAOQfWSp6VahQQatWrbrr8dWrV7PQPfKdGSGvKqHIrXUPHO1cNe/1Ldq346CBqfKORjX8lDJr+ddDl4wNAwAAAADAfWSp6GW1Wu95PCEhQWZzli4NGMbe3k4zvx2pGPOtwpezXVF9OGytDv52zMBkeYNHEUdV8/eUJO0/dllx8YnGBgIAAAAA4B4yXJm6evWqTp8+bZu2ePnyZVv79s8ff/yhpUuXqmTJkjkWGsgp7h5umrJ8iG5Yb41kcrHz1PuDVurvI6cMTJY3pExxTEi0aP+xywanAQAAAADg7jJc9Prggw9UoUIFVahQQSaTSS+//LKtffunXr16Wrt2rYYOHZqTuYEcU7pccU1a2l8xlltFHVezt8Y9uVhnwv4xMJnxmtS4ta7XzgOs6wUAAAAAyLsy9PZGSWrfvr2KFCkiq9WqUaNG6YknnlD9+vVT9TGZTHJzc1ODBg3UsGHDbA8L5Bb/ymX01hd9NOmZZXK185IkuZmL6d+9PtPs0BHy9C5qcEJjNK11q+j1yx8X9PKTtQxMAwAAAADA3WW46BUUFKSgoCBJ0o0bN9SjRw/VqsUfvCi4qtYK0Ovzuuo/Q76Ti52HJMlNfnq564eav+nfcnB0MDhh7qtVyVvubg66diNB2/afl9VqlSlldXsAAAAAAPKQLK02P27cOApeKBRqN6qm4TPbKz7pum2fU2wJvdTjP7JYLAYmM4adnVnNaheXJIVHxCjs3DWDEwEAAAAAkL4MjfSaMGFCpi9sMpn09ttvZ/o8IK9p/HAdXfr3Fa2cckj2ZkdJUtJ5H40b+rEmznvR4HS5r3mdElq/46wkadv+8wooUzinegIAAAAA8rYMFb3Gjx+f6QtT9EJB8mjv1jp38qL2hETKZEoeIHlhr4PmTF6iYW8+aXC63PVQ3RK27W2/n9czj1UxMA0AAAAAAOnL0PRGi8WS6U9SUlJOZwdy1ZBRfVSq6a0pjSaTWXtXXNHW9bsNTJX7Gtfwlb1d8jpe2/afNzgNAAAAAADpy9KaXhkRGRmZU5cGDDP+42FyKHPF1rY3O2remFDFxcYbmCp3ubk4qH61YpKkP8OiFBEVZ3AiAAAAAADSytaiV3x8vJYtW6Zu3bqpZMmS2XlpIM/4cPnrinW8NcLJzeSrNwfONjBR7rt9iuMvvzPaCwAAAACQ9zxw0ctqtWrjxo169tlnVbx4cfXp00c7duzQk08WrnWOUHjY29vprflP62ZSjG3f1WOu+mHlVgNT5a7bi14/M8URAAAAAJAHZWgh+/Ts3btXixcv1tKlS3X+/HmZTCb17dtXw4cPV9OmTWUymbIzJ5CnVKlRQXW7+ujwmlhJktlkp/9O2q7mwQ3k7uFmcLqc17zOraLXT3vDDUwCAAAAAED6MjXS68SJE5o4caKqVaumxo0ba/ny5XrqqacUEhIiq9Wqxx9/XEFBQRS8UCi8NP5p3XS7YGu7mX307/6zDEyUe/y8XVSzopckae+RCEVdKzxrmgEAAAAA8ocMF72CgoJUuXJlzZ49W8HBwfrpp590+vRpTZs2TfXr18/JjECeNeHzQYpLumZr3zzjqRWfrzcwUe5p06i0JMlisTLaCwAAAACQ52S46LVr1y75+/tr3rx5mjlzph566KGczAXkC2UrlNLD/crb2iaTWd/M3K/LFwv+20uDG5WybW/e84+BSQAAAAAASCvDRa/Zs2erZMmS6t69u0qUKKHnn39eW7ZskdVqzcl8QJ436NWesnhftLVd7bw0pv8cAxPljofrl5TZnDyVefPucwanAQAAAAAgtQwXvYYNG6Zt27bp77//1ssvv6yff/5ZwcHBKl26tMaOHSuTycRaXii0Jn/xgmKTom/tuOSrLz5aZVygXODp7qQG1YpJkg7+HakLl2PucwYAAAAAALknUwvZS1KFChX01ltv6fDhw9q9e7f69u2rH3/8UVarVcOGDdOQIUO0Zs0axcXF5UReIE/yK+mjTsOqp9q3cdExXYu+YVCi3BHcuLRtewtTHAEAAAAAeUimi163a9CggWbMmKEzZ84oNDRUHTp0UEhIiLp06aJixYplV0YgX+g7+FHZlbhsa7vaeWnC8E8NTJTz2jRkXS8AAAAAQN70QEUv20XMZrVt21aff/65Lly4oK+//lrBwcHZcWkgXxk/f0iqtzleOeSoA3uPGpgoZzWvW0KODsn/N7J+x1nW+AMAAAAA5BkmK3+lZquAgABJ0okTJwxOAqNMG/2Zjm9MtLVvFrmgRT++bWCinPXIi2u1fsdZSdK+//ZQvWqM8gQAACjINh6+kOG+gwcPlin8IH8fATBEtoz0AnDLK5P664bp1tscHa8X1/pVPxuYKGd1belv2/72p5OG5QAAAAAA4HYUvYBsZm9vpydeb55q3+JpWwxKk/O6PFzetv3NT6cMTAIAAAAAwC0UvYAc8Gjv1op3OW9ru9wsoZVfhhqYKOeU9nNT4xq+kqTfj11W2LmrBicCAAAAAICiF5Bjnn2zg6xWi629avYuWSyWe5yRf3Vr5W/b/pbRXgAAAACAPICiF5BDWj7SREkel2xtV0txLf7kOwMT5RzW9QIAAAAA5DUUvYAcNHRCV1msSbb2+kUHC+Ror8AKnqpczkOStPW387ocFWdwIgAAAABAYUfRC8hBjR6qLbPvFVvbTb6a9/7/DEyUM0wmk7q1TF7Q3mKxas220wYnAgAAAAAUdhS9gBz20pTeSrIk2NrbloUp4WbCPc7In25f1+ubH08algMAAAAAAImiF5DjqtetLKey12xtN7OPPhr/XwMT5YwmNf3k5+0iSVq/44xi4hINTgQAAAAAKMwoegG54NVpTynBEm9r7193UTE3Yg1MlP3s7Mzq8nDyFMfY+CRt3HXW4EQAAAAAgMKMoheQCwKqlJVH5VuLu7vaeWnGmC8MTJQzmOIIAAAAAMgrKHoBuWTU9P66mRRja/+19bqio67d44z8J7hRKbm52EuSVm89pcTEgvemSgAAAABA/pDvi17Xr19XmTJlZDKZtGfPnlTHFi5cqCpVqsjZ2Vl16tTRmjVr0pwfHR2tQYMGydvbW+7u7urZs6fCw8NzKz4KkZJl/FS8zq22s11RffhWwVrby9nJXo8ElZUkXY6O15Y9/xicCAAAAABQWOX7otfEiROVmJh2weylS5dq8ODB6tOnj9atW6egoCB1795dO3fuTNWvT58+Cg0N1dy5c7V48WIdPXpUHTt2TPeawIMa9Z9nFZ903dY+vv1qgXuT4xMdKtq2v1r7l4FJAAAAAACFWb4ueh05ckQff/yx3nnnnTTHxo0bp759+2rixIlq3bq15s6dq0aNGmnChAm2Pjt27ND69eu1cOFC9e7dW126dNHy5cv1xx9/aOXKlbn5KCgkvIt5qFh1q63tauelhdNXGJgo+z3Worw83R0lSSu3hOlGbMEq6gEAAAAA8od8XfR68cUXNXToUFWtWjXV/hMnTujYsWPq3bt3qv19+/bVpk2bFB+f/Ba9devWydPTU+3atbP1qVq1qurWrau1a9fm/AOgUBo+vo8SLTdt7W0rjxuYJvs5Odqpd9sASdKN2ESt2nLS2EAAAAAAgEIp3xa9li9frgMHDmjs2LFpjh05ckSSVK1atVT7AwMDdfPmTYWFhdn6Va1aVSaTKU2/lGukJyAg4K6fM2fOPOijoYDzr1xG9n7Rtrab1U+rv95kYKLs9/SjVWzbTHEEAAAAABghXxa9YmJiNHLkSL377rsqWrRomuORkZGSJE9Pz1T7vby8JElXrlyx9buzT0q/lD5ATug/qmOq9rKZv8hisej8uUs6+NsxWSz5+62HzesUV4XS7pKkjb+e0z+XbhicCAAAAABQ2NgbHSArJk2apOLFi+vZZ5815P4nTpy467GAgIBcTIL8qlmb+prnskZOsSUkSa6JxfVi96mKPe0qBztnxSV9J3PRGPV5qaUe6fGwwWkzz2Qy6elOlTVh/j5ZLFZ9uvJPvfN8Q6NjAQAAAAAKkXw30uvUqVOaPn263nnnHUVHRysqKkrXrye/De/69eu6fv26bURXdHR0qnNTRoB5e3tLSh7RdWeflH4pfYCcMuSdx2SxJtnaiee85WDnLElytnOX443iWj7poMYP+zhfjvx6rms12dklTx3+ZPlhxcXzRlQAAAAAQO7Jd0WvsLAw3bx5U48++qi8vLzk5eWlzp07S5Jat26ttm3b2tbyunNdriNHjsjR0dE2GqtatWo6evSorFZrmn53rgcGZLdmberL7HfvabR2ZnuF/+qgQa0n6+zJ87mULHuULVFEvYKT/7d2KTJOi9cVrAX7AQAAAAB5W74retWtW1dbtmxJ9fnggw8kSXPnztWcOXMUEBCgKlWqaNmyZanODQkJUXBwsBwdHSVJHTt2VGRkpDZturWI+LFjx/Tbb7+pU6dOufdQKLRGfdBPCZa4VPtuul1QrMOFVPscbxTXm90X68vZ3+Riugf3ypO1bNsfLDmQpsAMAAAAAEBOyXdrenl6eqpVq1bpHmvQoIHq168vSRo/fryeeuopVaxYUa1bt1ZISIh27dqlrVu32voHBQWpQ4cOGjhwoKZPny5nZ2e9+eabql37/9q77/AoqvUP4N+Z2b7pHUggJHSpF1EBEUGKCKKAItyLAiqIHRURxIJIvf5AQEUsgIpSRFRQRGqUqhcVld67QEhvm2yZ8/sjZMKSQoBNNtl8P8+Thzlnzpx9Z08yZN+cOdMcffv2rYjToWouvlEdxN1mxKktgBAq/Bpk4f0vxgEAJjw9F6e358/2AvJvedy84BxU19cY8mzV+P68qWkE2jWPxLa/z2PP0VSs//UMut4S7e2wiIiIiIiIqBqocjO9ymrgwIH46KOPsGjRInTv3h1bt27FN998g7Zt27q1W7p0Kbp27Yrhw4fj3//+N+rXr48ffvgBOl2VywdSFfXKzMfwyIybMXx2e8xYPAqyLEOWZYx/7wn0G3cDctRkra0syfj5k1PYuv53L0Z8dS6f7UVERERERERUESTB+408qmC9sNKe8Eh0NdLTMvFCv1lQ0iO0ujxXNoQ1E7UaBmLUtCEICQv0YoSlczpV1OuzBCfO5j9wYu+y+9G4brCXoyIiIiKi8rZ+73kMGzYM0tnd/HxERF7hszO9iHxFYJA/3v3+ReQohet8GRUrTLlRSP7LjGe7zsXiD7+vtE941OlkPPNAU608e8luL0ZDRERERERE1QVnenkYZ3pReTl9/BzG9vkUFqX4WVJ2Vw6chkwEROkR3zQKDzzWA7VqR1ZwlMVLz7Ij+q4vkJXjgNmo4NSq/yA0yOTtsIiIiIioHHGmFxF5G2d6EVUR0bFRmP7Dowhqko08y3nkujLd9hsUCyyuSDjPhODAGjtevXcpnuk3DUf2n/BSxIUC/Qx45J6GAABbngtzvtrr5YiIiIiIiIjI1zHpRVSFRNQIxbTPnsMnm17FWz8MAcIulNhWL5uQdyIYEwd+g9lvLKy4IEvwzANNIcsSAOCthX/hQqrNyxERERERERGRL2PSi6iKiqgRig9+HIeHprZGdDsVCLuAbCTCpTrc2hkUC/Z8Z8OwbhPhsDtK6K38xUUH4NGLs70ysx2YOG+n12IhIiIiIiIi38c1vTyMa3qRt+Xa8jBn4mL8sfosrHKo277QFjZMnveslyIDzibloN69S5CT64ROkbDvq/6oF1N5nzxJRERERNeOa3oRkbdxpheRjzGZjXh+0hB8vPV5WOtnQBWFT3U894eEQ/uOey22GmEWjHqwOQDA6RIYN2eH12IhIiIiIiIi38akF5GPMpmNmLF4FOrcWlinV0z477Ofey8oAKMGNUdEiBkA8OW6o/jf7kSvxkNERERERES+iUkvIh/30luPIFskaWUpOQw/fr3Ja/H4Ww14fdi/tPLo2b+Cd1kTERERERGRpzHpReTj9AY9ej/ZSitLkoyvP9jsxYiAYX0ao37t/LW8fv7jLFZtOenVeIiIiIiIiMj3MOlFVA30f7gHcpTzWtl2QfFiNIBeJ2PqUzdp5THv/A+qytleRERERERE5DlMehFVE5H1LNq2RQ7B8UOnvRgN0KdTLG66IRwAsOdoKr5JOOa2f/fOg9i986A3QiMiIiIiIiIfwKQXUTVx4+2N3Mo/frXFS5Hkc7lU+O0tTGqNnbUNDocTH//fMjx485t4Z9hPmP3oRjx5z1TkZNu8GCkRERERERFVRUx6EVUTd/brAFW4tPLuX497LxgAm9b8D/EiGOEXy4f+yUHXm2Zhx5JUWFyRAPLXH3OeCcHwjtOx7+8j3guWiIiIiIiIqhwmvYiqiaCQANikZK2cdtrpxWiAc6eTIAH41yV1exV/FLeylxURmPTwYjidrmL2EhERERERERXFpBdRNRIco9e2zSIUyYmpXoslIyUbAFAbQOjFugsATgNwqQ44/M/D7srR2lsRgfcnL67oMImIiIiIiKiKYtKLqBpp1jZW25YlBWu+8d66Xpnp+QmtgtleCoAmqh2162Zh7KJemJ/wKp589w44Vbt2zP++OYNcW55X4iUiIiIiIqKqhUkvomqkx/0d3Mq//+S9pyNmpRcuTh8LYOOMdvjrf49j7rLnEd+oDgDgxvbNYK1bONvLogTjv6PnV3CkREREREREVBUx6UVUjcTUrYlstXBdr8RjOaW0Ll85WZfM2BIqbr21CXQ6pUi7l94e7Hab49Etefh7x/6KCJGIiIiIiIiqMCa9iKoZU2jhYvByntVrceRmO7Rth5oHWS7+clSrdiRqti7cZ1Qs+O+I5UhPyyz3GImIiIiIiKjq0nk7ACKqWFGxgbhwcf16k+KHowdPIa5BTIXHYbcVPj3SBXspLYGxbz+KEZ1mwIoIAIBVCsfTPWaix9BWuKt/RwQG+ZdrrNXZ8UOn8f7EZUg8ngXVJSDLEuJahmPo8/ciOjbK2+ERERERERGViEkvomqmUas6uLDznFb+JeFPryS9HLkqCp4lqUrOUtv6+Vvw8scP4L9Dv4NR8QMAmB2R+OnDf/DTh4vhUPPgFDaoigOyXoXeDBj9dLAGGuEXaIbRrIfBqIfRlP8lK+6zykwWA0IjghAeFYzIWuEIDQ+CTq+DLEvaDLRcWx7SUjKQmZGNzLQs6HQ6+AVaUTMmAiaz0ePvj7ft2PI3Pp70HZznA6GTrTCgcFbg6W3A+C3LYTclI65VGOIa14ROr8DpcCEnMxfWADNuvr056jWu4zaDz+l04def/sTenUfQ9Mb6aNuplTdOjYiIiIiIqgkmvYiqmZs7Ncfm+YVJr/1/nPBKHM48oSW9oLhKawoAaNKyPu56ujHWvXccsuS+9pdeNkKPi4knR/6XKwPI+AfIAACoAPIufpXkbLG1QqgQAGSp+NsvVeGCTaTBEOhEXIsIdO7dBjfd1qLY9ckqK1VVcerYWez76wj+l7AHR3ZegNEWAUkKh66Em+AVWQ+zPQpnfwXO/pp42d4MbFmwDnmubLgMWTD6ScjLFNA5/GFQLACA35buwBz5e9z+QGM88sJ95XuCRERERERULTHpRVTNxDesjTxXNoxK/syds8fSvBKHcEratqxTy3RM/4d7wGBYj6/nbIMxL7xI8qs8SJIMqZT9sqTAKoUCmcCpLcCnW37Dx+pW2OV0KEYVOpMMWSnoS7r4b0Hnhf2oLgHhAlRVQKiA0P6VINT8trIiIMmArEiQ5Iv9Sfn7pIv9lfQakiRBdQm4HCpcTkB1CKhOGZLTAKNkhSIXpCAVmBCFy0/a5kqHquRB57Jos+2uxKhYAZcVSAcs+V27saiR+N/iFPy5ZRreXjaqSiUKiYiIiIio8mPSi6iakWUZLkNWfjICgC3FO3EIl6IlVhRDaWkld/cO6oJ7B3XBkf0nsOLzn5B8Lh1ZabmwZTpgz3HBmStDcumgCCMMshlSCTO0ylP+zLOIK08uu0RBlKWmfUq/C7RUAvlvtw6XXfivkGfKlhLRvk88Hh01FHqDHrm2PCz+4HtsXbUPjiQzTMr1r6dmPxWMEd2n4N3vX/TJW0WJiIiqqy5NIiGd3e3tMIioGmPSi6ga8o/QwXXxbj6jGgin01Xhs2xkVaclXPSmq09MxTeqg+cnDi61jcPuQOK5FORk22DLykVOTi5s2bkQQmhthBDIyshB6oUMpCZlIjMtB7ZsOyBE/qwrkT/rSm9UYDQbYLIYYDTpoaoCtuw8JJ5KQ9rZXEg5ATBevHWvqstzZUMKyELvR29BnweHu+0zmY0YOrIfho7MX6Prt627kJacAXueA0aTAX7+Fpw+fh57fz+Gf46kwpYCyC4jhD4X5mAZtRuHIb5JLSQs/wtICtWSkkp6BIbfMQ0zVz6LkLBAL5w1ERERERH5Gia9iKqhmAZhOH42P/Gjk43Y+csetLm1eYXGIMOgbRvM5ZNw0xv0qFU7slz6vpzT6cLPP/6K/yXswakDSchKdkJ1SJBcOhTcg1g4n63ozDYBAUjqxX8LvyRJaM2FKgFCAlQJUsHcMOHen+TWdzGvIzkhJBWSokJSAINVgl+IESGRfoiMDkHzmxrg5o4t3BagL4lOp+CWji2L3/lo6ccOHN4Ls8YvxK6VmVDk/P+KzPYoPHPnO5i0dCjqxNe64usTERERERGVhkkvomqoaZt4HP/5sFb+ffPeCk16qaoKvVx4G5vJqi+lddWg0ym4o1c73NGrnbdDqTKeHf8gPo9YiY0fn9C+H6yIwKv3LcIDY29Ez/6dvBwhERERERFVZRW/2A0ReV27zq3cyod3n6nQ189Iy3JbhN7ix3WcqqtBT/TG/eOaI8+VrdWZlUB8M3UfXh3+DpzOKz/Zk4iIiIiIqDhMehFVQ6ERwchxpWrl5FM5Ffr6F867r55vCTBV6OtT5dKjX0eMmNkJOWrh94Ui65D4hxFD203G1vW/ezE6IiIiIiKqqnh7I1E1JVvzgNz8bWemofTGHpacmOZW9g/0jQXg6drd0rEl4lbF4KUBc2DILlyHzaJG4rMxv2Ou/APC6poQVjMQtWLDULdhLbS8pQkCg67/6ZFEREREROSbONOLqJqKqOunbVuUYGxctb3CXjvlsqRXQLC1wl6bKq+IGqGYlzAOMbcKONQ8t30WNRI5RwJxcjOwfWESFr3yF57v/CmGdnwTc6csQWZ6dgm9EhERERFRdcWZXkTVVN+HO+GTF3do5W/mbULnnm0BAPv+PoKta/9Auy4t0aRlfY+/dlpKpls5KJSzdSifLMt4ZeZj+G3rLsx6/ltYXCU/fVMnG4DsSOxcnoFfv/wYcnAGasQHIbZhFILDAhAQbEVgsD8Cg/0RHBaI4NAA6A3X/9CEvFw7En74BdvX7cLJvSlwZMmQFBWKCWh0UxRGvvkQTGauU0dERERE5G2SEEJ4OwhfEhcXBwA4evSolyMhurJBN06EFREAAJsrA63vicSO70/CinAAgFPNQ9fH4zBgWE+Pvu7cKUuwc3mGVn5oamu079Lao69BvmHdii34+sNNyPpHgUkOcHsAwrVwqna4hB0uOCEkJ6CokBUBWS+g6CXojDIkSSpynBAC9hwVjhwJBleg29NHL5ejpuC2gXEY9mL/64qViIjIF/DzERF5E2d6EVVjcTcG4fxv+dtmJQB7v7dpCS8A0MlGrH3/KCx+G9B74B0ee93MdPeF80MigjzWN/mWrvfciq733AoAcDpdOHrgJA7tOY6Du07i759PQs4Kzp/xVUY62QAdLmkvADgvftkKq4pjuPh1pYUBLHIIfluahm2r3sSEBY8gpm7NMsdHRERERESew6QXUTU2eOTdmPqfH0qdPaOXjfjmv7tQt0E0mrVu6JHXzc6wASi8zSwsMtgj/ZJv0+kUNLihLhrcUBc9L06iunA+BQtnr8RfP52ElOMHo+JXeiceluvKhDBnQ6gSdHkBMChmbZ8hKxKv9F2Ceh0seHHaUN7ySERERERUwZj0IqrG4hvVQZ4hCWaH+7pJUkQSclKdMDuiAAAGxYKPJq/A7OWjPfK62Zl5KEh6CaEiODTQI/1S9RMeGYLnJw3RyqePn8O+vw4jIzUbmenZyMqwITszF7bsPORm25GX40BerhOOXBecdgHVIaA6JAhVhqTKkETJ/y0KyQnJ6IQ5SEa9FjVwe68b0bpdU8hy/tSvU8f+wdSRn8F+OlBLJJsUP5zeBgxrNxMx/zJh6Kh7UL9xbHm+JUREREREdBGTXkTVXJsedbF7ZeHthrXauvDaOy8jPS0TT3V6DxYlBACQejqvpC6uWm62Q9t2qHnQ6a5vnSaiAtGxUYiOjfLKa8fUrYn3VozB6uU/44tJ22CVQ7V9FiUYyX8Bbw36ETaRBsXPAUWH/PXDJECSAJOfHsERVjRuHYu+D3WD0VT22zaJiIiIiKgoJr2IqrknX/k3Xjo0E+cPZ+O2fo3w6Kj7AQCBQf4whTuBlPx2Ors/VFXVZrVcD7vNqW27YL/u/ogqkx79OuLWLjdi8nMf49xOAYNi0fZJkgyLFALkFD3OngqcPwWc//0frHl/DgwR2Xj45Z64pWPLMr2uqqpYt2Ir1nz5KzISc6GqAkaLgt4Pt0ePfh09dHZERERERFUHn97oYXw6CfmSN556H//8UjgL68n3b0PzNo2uu9+HO70JfWb+LZXZajI+/2PsdfdJVBmdPZ2IGWM+x/k9TpiVoKs+XhUqREgShr7Uo9gnnCYnpuKbz9bjt42HkHNWV+xrCKECYcl4de5QLqpPREQVjp+PiMibONOLiErUsl19/PNL4S8o2zf+5ZGkl8suCpexV1zX3R9RZVUjOgJvff48nE4Xls1fjd8SDiDpZDZcNj0kAIAECECCDL1khk52X+xelmQgNQKfjfkdH+h/QGS8FYFhVpw/mYa0M3YYHSFQZD2AMJhLuEtYkmQgORyv9F2EfqNbefRJrERERERElRmTXkRUog7d2mDV9MP5H5oBHPjzlEf6VR2Sti3rONmUfJ9Op2Dg8F4YOLxXiW1UVcWxg6ew7OO12LPpHCyq+wMmzI5IZOwHMgAAwbAAQAl3G9tcaRCSCoscotWZlACsfOsAfvt5H15+exifJklEREREPo9JLyIqUUhYIGwiFRYpf0Hu5JPFLER0DYRLwcVpLlC4VjcRAECWZcQ3qoMx/zcMALD4w+/xw8c7iyS/iuNSncjTJyOmaQD6PtwZN7ZvBgBY8tEqrHr/b1guLqqvyDqc/y3/aZK1W5tRv1k0/AOtyMrIgV+ABe26tEKN6IjyO0kiIiIiogrEpBcRlUof6AQy87dFjqX0xmUkqzrg4q1YetP1L4xP5IsKZoatXv4zvpqzGY4UI0yyPyRJhkt1IFdKhzVCoHWneugzuCvCI0OK9DFgWE90vacdRvV/F4aswuSZRQlG0p9A0p9JAJK0+rXvnkCOKwUNOgRhzP89Ar1BX6RPIiIiIqKqgkkvIipVjfhAJP2Zv21WAnD80GnE1o++rj5lFE7vMpS0EBERAch/GmTB0xcz07Nx+sQ5xDWIgdFUtmmSoRHBmLdxHCY89T5ObHfCoJhLbW9RQnB6GzC07Vvo/WQr9H+4x3WfAxERERGRN3CKBRGV6oY2dd3Km9f+fl39qaoK/SWLdZssnElCVFb+gVY0bh5f5oRXAVmWMX7Ok5i4YgBMsWnIdWVd8RirFIYNc05haMc3sWPL39caMhERERGR13CmFxGV6rbubfDzRyu18p4dx66rv4y0LMhS4ewusx8X9SKqKLVqR2LWV6OhqipOHTuLndv3weFwwi/AjLMnk7Drl6NIO2hwmw1myI7ExyN/wWxlBWo3C0SdBpFo1a4xWrdrClnm386IiIiIqPJi0ouIShUdGwWbKx1mJRAAcP545nX1d+F8ilvZGmC6rv6I6OrJsow68bVQJ75WkX1H9p/A1GcWQkoO057cCgAWV+TFdcDS8fuXv2COKwEuczra3d0AQ5/re9Wzz4iIiIiIyhv/REtEV2a2aZuOLOm6ukpOTHMr+wdZr6s/IvKs+EZ18NHaV9Dn5cbIlhJLbGdQzDDbo7BzeQaGtZ2F0Q+9jaMHT1VgpEREREREpWPSi4iuyBJUOClU57q+JzimJqW7lQOCmfQiqox69OuIz359Gb1H1wfCLiDXVfIsT7MSiPS9Vkwe8B2GdJiA9yYuQlZmTgVGS0RERERUFG9vJKIrCqlhRfLFCR9GxQ8pSekICQu8pr5SkzLcyoEhftcbHhGVE1mW0bN/J/Ts3wkAcO7MBfy+dTd2bjuIY38nAmnB0MmFtzUqsg6KLQp/f5uFJ5e/j5otFTw78T+IqhXurVMgIiIiomqMM72I6Ipqxoa5lffsPHTNfWWkZLuVg68xeUZEFS+qVjh69u+EV2Y+hnkbX8UbX9+HsJa5yHGlFmlrUvyRssuCMb2+wISn30dert0LERMRERFRdcakFxFdUVwj98WuD+85cc19Zaa73/IUGs6kF1FVFR0bhUkfP4MFO0ah3UPhcPidh1N1T24ZFQvObFfwSLv/w+IPv/dSpERERERUHfH2RiK6oiYt62EFDmrlU0dKXtz6SrIzbAD0Wjm8Ruj1hEZElYBOp2DwM30w+Jk+uHA+Be+8tgjH/2fTnvoKAFY5DD99+A9+/GwCBr3YGV3vubXM/V84n4KP/7scJ/dfQHaqExASQmNMaNY2Dg2bxSIsMhi/bdmNw3vOICDYggbNaqNjj5vh5399axASERERUdUmCSGEt4PwJXFxcQCAo0ePejkSIs9RVRXDbnwPOtkIADDUTsU7X790TX2NfuhtpO/NX7xeCBVzfh0GnU7xWKxEVDnkZNsw5bmPcXqHCoNiLrpfdx5Nb6uJAY/diTrxtYrsT0vJwKqlP2Hr6j2wnbIU20dpbK4M3PNsM/Qb0v2az4GIiK4fPx8RkTdxphcRXZEsy8hDFnTIT3plJV/72jy2LDuA/KSXQ81jwovIR1msZrz54dM4fug0pjzzKURiKCSpcFUFizMSRze6MHnjKuS5suCUcyEJGbLQQ5H00EmGi+1DYbiGy4RZCcAPsw8iL8+Ofz92t+dOjIiIiIiqDK7pRURlIpsc2rYjW7rmfuw2p7btAhe2JvJ1sfWj8cHqcej/ejPYDOeKbWNU/GCVwmCRQ2BS/KGXTW4JsgJ2lw3ZuIBskQQh1Cu+tk42YuMHJ7mWGBEREVE1xZleRFQmliAdxMWlvHSua18nx5Grait6qZKz1LZE5Du69G6PLr3bY+Oq7Vg0cwNcSX4wKGW7lmQjEf/qHo0RLz8IizX/NsezpxPx609/4/Sx80hLykRsw5q4uVNzJJ1LxdxXv4MpNwoAoMh6rH3/MOIb/YWbbmtRbudHRERERJUPk15EVCYhNaxIvpj0Mip+SElKR0jY1T950WUXhcvYKy6PxUdEVUPnnm3RuWdb5NrysPyTNdj9v6NIOZeNvGwVil6C3ijDYNbBZNWjbqMo9BrYETF1axbpp0Z0BO4d1KVIff3GsWi1rgkev/O/MGRHAgAMigXvjPwBb31XE1G1wsv9HImIiIiocmDSi4jKpGZsGJL/ytbKe3YeQoeuN151P6qj8NZIWcfnaBBVVyazEf95vDfwePn0/d4Po/BYp/+DRc1PfFnkUIy69wNM+fLhYpNoREREROR7uKYXEZVJXCP3p6sd3nPimvoRrsIVqRXDdYVERFQii9WMN78YCpsrTauzigi83O8z/LF9t/cCIyIiIqIKw6QXEZVJk5b13MonDydeUz+yWjjBVGe89gXxiYiuJLZ+NIZOug15rsJZqhY5BO88sQH/fWkeVPXKi+ETERERUdXFpBcRlUnt+JpwqnlaOelMxjX1I6NwepfBzDusiah8dbrrFjwxqzNyXKlanUEx48gGF4bcOhH/2/SXF6MjIiIiovLEpBcRlYksy8hDllbOSrZfdR+qqkIvG7Wy2aovpTURkWfcdFsLjF88ANmS+wxVsz0KH47ciqf7TkPi2WQvRUdERERE5YVJLyIqM9nk0LYdOVd/+chIy4IsFa7pZfbjol5EVDHiG9XBgq0vIaRZDlxq4bVMkXWwnwzGi3d9gukvL+Atj0REREQ+hEkvIiozS9Al63G5LFd9/IXzKW5la4DpumMiIiorvUGPKQtGYvC0m5GjO++2z6T44+BaB0YPettL0RERERGRpzHpRURlFlLDqm0bFSuSE1NLaV1UcmKaW9kv8OoTZ0RE16tD1xvx6bZxaNUvwO3pjgCQedAfLz3ExBcRERGRL2DSi4jKrGZsmFt5z87DV3V8alK6Wzkg2FpCSyKi8iXLMkaMHYD3fnoS1nruD+ZI22vFlBc+8lJkREREROQpTHoRUZnFNarlVj689+RVHZ+WnOlWDgr1v+6YiIiuh3+gFTOWjELkje4P5zickIeNq7Z7KSoiIiIi8gQmvYiozJq0rOdWPnUksYSWxUtPznIrB4cFXndMRESeMGHuUwhskq2VdbIBC179uchahERERERUdTDpRURlVju+JpxqnlZOOpNRSuuiMtNz3Mqh4Ux6EVHlMfWTZ5FrPKeVLXIIRvd/j090JCIiIqqimPQiojKTZRl5KJytlZVsL6V1UdkZNrdyWGSIR+IiIvIEWZYx6YvhsLkK1x80ZEfyiY5EREREVRSTXkR0VRSzQ9t25FzdJSQnqzBJJoSKkPAgT4VFROQR0bFRuG/0v+BSC691mQf9MWv8Qi9GRURERETXgkkvIroqliCdtq1zWa7q2NzswqSXQ82DTqd4LC4iIk/pPfAONL7T/fq2+7sszH6DiS8iIiKiqoRJLyK6KiE1/LRto2JFcmJqmY/Ny3Fq2y5c3a2RREQV6YXJQ2Gsk6aVZUnBrpXZmPz8h1zji4iIiKiKYNKLiK5Kzdgwt/KenYfLfKwjt/CDoio5S2lJROR9M5a+ABF6QSvLkowTm4CHb5+E/236C6qq4tyZC/j6s7V4f/JivDVmPj7871KcOXnei1ETERERUQHdlZsQERWKa1wLf397QCsf3nsSt3VvU6ZjXXYBfUFBcXk+OCIiD9LpFMxdPRZP9Z4G17lQrd6YE4l5z/+Kueom6GXjZUelY8fSb2CTk9CmZx088fIA6A16EBEREVHF40wvIroqTVrWcyufOpJY5mNVh6RtyzrhsZiIiMqLLMt4d+VLCGmWA5fqPkO1aMLr4jGSDKuIwN7vbXj4lumY/PyHSEvJqIhwiYiIiOgSnOlFRFclpm4NONQ87cNe0pmyf5ATLgW4mPdSDOURHRGR58myjCkLRmL9yq345I2fYZXCrnzQRRY5BCc2ASPvmA9dWBbqtYjEzZ2b4eaOLWCxmssxaiIiIiJi0ouIroosy7AjC3rkJ72yksu+IL2s6oCLD2zUGaXSGxMRVTJderfH7XfdgjVfb8LOrQfwz7FUWAONaPyvOmjYLBaBof74Y+tebF+9F/az/tBdMhPMqFiAVAuO/SRw7Ke/8YX6B3KlNBiDVMQ0CkH/YV3RpGV9L54dERERke+pcrc3Llu2DPfccw+io6NhtVrRsmVLzJ8/H0K43yo1b948NGjQACaTCS1atMD3339fpK/09HQ88sgjCAkJgb+/P+677z6cPXu2ok6FqMpSzA5t25FT9suIjMLpXQYzc+5EVPXodAp69u+EV2aNwJyVY/HWwufx8HP90L5LazRt1QAPPXUv3l/1Ml5d2gfmuHTkuXKK7UeRdbBKYdClR+DsrzrMejQBg9pMxCezvubTIYmIiIg8pMolvWbMmAGLxYLp06fju+++Q48ePTBs2DBMmDBBa7NkyRIMGzYMDzzwAFavXo22bduiT58++OWXX9z6euCBB7B27VrMnTsXX3zxBQ4cOIAePXrA6eRT5YhKYwkqTFjpXJYyHaOqqtv6NyYLF3YmIt8VWz8aM798EbMSHkHd2yXY9Odgd9lKPcYqIrB9YRKGtJuEzet+q6BIiYiIiHyXJC6fIlXJJSUlISzMfS2N4cOHY+nSpUhNTYUsy2jYsCFat26NRYsWaW3atWuHoKAg/PDDDwCA7du3o127dlizZg26desGADhw4AAaN26MJUuWoH///tcUX1xcHADg6NGj13Q8UVUw7tHZSPrTpJUn/3A/QiOCSz0mPS0To7ss1srhrfIw8aOnyy1GIqLKxmF3YMv637Fz2wEc33cOaf/kQcr1g0nxK9LWpToQ2tSONz54AiZz8QvmA/l/UFj8wffYufkQ0s7b4HIK1G8diSdeGYCgkIDyPB0iojLh5yMi8qYqN9Pr8oQXALRq1QoZGRnIzs7G0aNHcfDgwSJJqwEDBmDDhg3Iy8sDAKxevRpBQUHo2rWr1qZhw4Zo2bKllhgjouLVjHX/Odyz8/AVj0k8m+xWtgaYSmhJROSb9AY9Ot11C56fOBizl7+Ez7a/hnk7nkWPkXFA2AWowqW1VWQ90vZa8Wj76Vjy0aoifeXa8jBr/EI81GYqNs07h8yD/lDSI2DIjsSJTcBzd8zHqP9MR0526bPLiIiIiHyZTyyqs2XLFtSqVQv+/v7YvHkzAKBRo0ZubRo3bgy73Y5jx46hUaNG2L9/Pxo2bAhJkoq0279/f4XFTlQVxTWuhb+/PaCVD+0+gdu6tyn1mOTENLeyf1DZboskIvJlOp2Cewd1wb2DumDbxj8wd9z3MDuitP1WOQwJH5zBqo/eRO3mgbAGmHDuRCrSj+pgUvxLfJKkQbEg8wAwvMPb+M+49ujRr2NFnRIRERFRpVHlk15btmzBkiVLMH36dABAamoqACAoKMitXXBw/q1XKSkpWrvL2xS0K2hTkoIpusU5deoUYmJiyho+UZXUpGU9fIvCpNepo4lXPCY1Kd2tHBBs9XhcRERVWbvO/8ItW1vi7Vc+xe7V6TAohX8csKiRSPoTSAIABMOkuB8rhIpcNQMyDPlPirzIKofhm8n7sPz9zRj5Vn80bdWgIk6FiIiIqFKocrc3Xur06dN44IEH0KlTJzzzzDPeDoeo2oipWwMONU8rJ53JuOIxacmZbuXAkKJr2BARVXeyLOOFyUPx6tJ+EKEXIETpT3J0qnnQ1UrByHl34LOdozEr4RHUuQ3Ic2VrbSRJhpIWgZmPrMMTd0/BwT3Hyvs0iIiIiCqFKjvTKy0tDT169EBoaCiWL18OWc7P3xXM6EpPT0dUVOHtAQUzwEJCQrR2p06dKtJvamqq1qYkpS3CWNosMCJfIcsy7MiCHvmLK2elOK54TEZqtls5ODSwXGIjIvIFcQ1i8OGacVi3Ygu+mvszbOcMMCv5100hVOSIFMTfHIgR4x5AjegI7bjAIH+8PGM4jh86jTeGLYAhK1Lbp8h6uM6GYtqDq2CKycLz0wYivlGdCj83IiIioopSJZNeNpsNvXr1Qnp6OrZv347AwMIPzwVreRWs2VVg//79MBgMWlKqUaNGWL9+PYQQbut67d+/H82aNaugMyGquhSzA7g42cuZc+VJo5cnvUIimPQiIrqSrvfciq733ApVVbH3r8MwGPSoE18LRpOh1ONi60djwU+vYtmCH7Hivd9gRWFiTCcb4DwTgsn/Xgm/OBvGzBziljgjIiIi8hVV7vZGp9OJ/v37Y9++ffjxxx9Rq1Ytt/1xcXFo0KABli1b5la/dOlS3HHHHTAY8n9J7NGjB1JTU7FhwwatzcGDB7Fz507cdddd5X8iRFWcJagwZ65zXXlR+uwM9yeIRUSFejwmIiJfJcsymrZqgAY31L1iwutS9w+9E5/972W06heAbJHktk8nG5F7PAgv370IT907FRtXbfd02EREREReVeVmej3xxBP4/vvvMX36dGRkZOCXX37R9rVq1QpGoxHjx4/Hf/7zH8THx6NTp05YunQpfv31V2zatElr27ZtW3Tv3h0PP/wwpk+fDpPJhHHjxqF58+bo27evN06NqEoJqeGHpPP520bFigvnUxAeWfKtwTlZdgD6wuPDg8o3QCIiApCfMBsxdgAefdGFD6YuxfavT8AqF/7hwaBY4DhtwdLXd+GTV7ZAF5SLkBoWBEf6AwByMnORnpSD7FQHnLmAcEmAkABZQNblfyl6CTqDDEUvIy/HBXu2AC4uRybrBfxC9YiKDUb8DbXQ8uZGaNA0Djpd4Wr8DrsDiedSYLaYEBTiry1bQURERHQ9JCGE8HYQVyM2NhYnTpwodt+xY8cQGxsLAJg3bx6mTp2KkydPomHDhpg8eTJ69erl1j49PR3PP/88vv76azidTnTr1g3vvPMOatasec3xFdw+Wdq6X0S+4L2Ji/D3t1la+d8TW6DjnTeX2P7pvtNgP5m/5p7DlYv5O/nwCSIib3A6XXh3whf4/buzsCjB3olBzYMdWYBQoIMBetkESZIv7rMjT07HjXfF4KnX/uOWHCOiqoefj4jIm6pc0quy40WdqovVy3/Gt1MOaOWbBobgkRfuK7H98O6TICWHAwBsrnR8tvPFco+RiIhKlmvLw9uvfIY9P593W/OrMskWSXjkzc7odNct3g6FiK4RPx8RkTdVudsbiahyaNKyHr5FYdLr1NHEUts7bCoKVqFR5Ss/7ZGIiMqXyWzE2OnDAADbNv6BVYu24MyBNKhZFhhlP8hS4S2GDjUPDmQBeidknYCkSFCdAsIpQagyJFWGJHSQoYMLdkBvh6QIABJUuwyDCIBeNl51jFYpDJ+M24rwGiFo2qqBp06diIiIqgkmvYjomsTUrQGHmqd9iEk6k1Fqe6cdWtJLUlzlHB0REV2Ndp3/hXad/6WVHXYHTh79Bzq9DqERwfDzv/IDS0qjqioO7TmOnb/sw+E9p3HueCqyUx3QGSQYrTpYAozwCzTBkefEhdOZcJwLgE7O/1/DpPhj6qNfYdbqxxEa4Z3bMYmIiKhqYtKLiK6JLMuwIxN65Ce9slJKn70lnIUzBmQD76omIqrM9AY94hvV8Vh/siyjYbM4NGwWV6b2B/ccw4SHFsEq5d8Wb5XC8EK/dzD/51e4yD0RERGVGX9rIKJrppid2rYzp/TLieQqzLHrTbz0EBFRyRrcUBfjFgxAritTqzPaojDh6blejIqIiIiqGn7yJKJrZgkuTGTpXKXf+qJoNzcCRgufxEVERKVr3DweA165ES61cCbx6e0CG77f5sWoiIiIqCph0ouIrllIlJ+2bVSsuHA+pdh2qqpCL5u0stnPUGw7IiKiS/Xo1xHRbSWtrMh6fPLqJhzcc8yLUREREVFVwaQXEV2zWnXD3Mp/79hfbLvkC2mQpcLZXZaAq3+CFxERVU+vvTMCuaZzWtmihODNB5di399HvBgVERERVQVMehHRNWvYItatvG9n8X95P/9Pkls5INhaXiEREZGPkWUZExc+ihxXmlZnkUMwefBX+G3rLu8FRkRERJUek15EdM1at2vqVj5x8Hyx7RL/SXYrB4Yw6UVERGUXU7cmRn98D3JcqVqdRQnGu0+tww/LfvJeYERERFSpMelFRNcsKCQANle6Vk45k11su+TEdLdySHhgucZFRES+p1nrhnj50/uQoxauH2lU/LB8yi7Mm/6VFyMjIiKiyopJLyK6PsZcbTMvQyq2SVpShls5JIJJLyIiunqNm8fjzaWDkI1ErU4nG/HLoiRMHPmBFyMjIiKiyohJLyK6LtawwgXq9S5/qKpapE1acpZbObxGSLnHRUREvim2fjRm//g0co2Fi9vLkoxTWyQ8duckpCSll3I0ERERVSdMehHRdYmsE6RtGxQzjhw4WaRNZlqOW7lGrfDyDouIiHxYSFggPtwwBgi/4L4jKRzPdnsfq75M8E5gREREVKkw6UVE16XeDdFu5Z3b9xVpk52ep22rwoXgMN7eSERE18doMuD9VWMR3DQHQhTOMrbIIVgx7QCeuHsKEs8ml9IDERER+TomvYjourS4uaFb+dCuU0Xa2LLt2rZDzYUs89JDRETXT5ZlTP1kJDqPiIHNVbh+pCTJcJ0Nxei7FuKlwW8jOTG1lF6IiIjIV/GTJxFdl8Yt6sGpFia1zh5LKdLGnuPStl2wF9lPRER0PQYM64lJX/8bDv/zbvVGxYK0PVa80P0TjHt0NtJSMkrogYiIiHwRk15EdF10OgV5UuGHiMwLRZNajtzC206E4qiQuIiIqHqJqVsT8xNeRdsHw2BzpbntMypWJP1pwlNd3sOpY/94J0AiIiKqcEx6EdF10/sVzuRSc4xF9qt2SduWdaJCYiIiouppyLN9MWfTU4hup7rd8ggAVjkUrwz6GE6nq4SjiYiIyJcw6UVE1y24hlnbNskByMm2ue0XLkXbVormxIiIiDzKz9+CV2ePwHs/PY4aNzmQ68rS9pnyovDq8He9GB0RERFVFCa9iOi6RdcL17ZlScHO7Xvd9suqXts2mHnZISKiiuEfaMX4OU9iyKR2butPJv1lwIbvt3kxMiIiIqoI/PRJRNetcatYt/Lu3w+7lXUonN5ltOoqIiQiIiJNp7tuQYMuhbOSZUnB0ncSvBgRERERVQQmvYjourVu19StfHz/WW07L9cOvWLSyhZ/3t9IREQV76X/PoIcpfDpjo5EP6SnZXoxIiIiIipvTHoR0XWLqBGKXFfhB4ek04VrpySeTXJr6xdoAhERkTe06hKjbRsUMxbM+MaL0RAREVF5Y9KLiDxCNeRo27a0wvrz/yS7tfMPtlZQRERERO6GPNcHDjVXK/+x7oQXoyEiIqLyxqQXEXmEJaTwcqJzFia2LpxLcWsXHOZfYTERERFdKiQsEEpohlY22sNxYNdRL0ZERERE5YlJLyLyiIiYAG3bqFhx6tg/AICUxHS3dsFhASAiIvKWbv++UduWJRmfzvzOi9EQERFReWLSi4g8Iq5JTbfy71v3AgDSkrPc6sNrhFRYTERERJfr82BX2FxpWvnk31zMnoiIyFcx6UVEHtGsTQO38oG/89dJSU9xT3pF1AitsJiIiIgup9Mp8ItxaWWzGobTx895MSIiIiIqL0x6EZFHtGjTCC7VoZXPHMlfwD4r3ebWLqpWWIXGRUREdLl2d96gbcuSjK/mr/ViNERERFRemPQiIo/QG/TIReHiwBmJ+U/HysnI0+qcah4sVnOFx0ZERHSpex/sAoda+P/Tri18iiMREZEvYtKLiDxGZy2c6eXK1gMAcrOdWp1T5BU5hoiIqKL5+VvgsqRqZVeqHxx2RylHEBERUVXEpBcReUxgpEnbNiIQebl22G2F66a4JH6gICKiyqFBmyht26hYsXr5Ji9GQ0REROWBSS8i8pha8YWL1CuyDn/9bx+clyzpJemcxRxFRERU8e556Ha3csK3f3gnECIiIio3THoRkcc0bFHHrbxrxyGoDkUrK6bLjyAiIvKOpq0aIFskaeULhzkbmYiIyNcw6UVEHtO6XVO38rH9Z6GoBq1stPKSQ0RElUd4Pb22bZXCsGPL316MhoiIiDyNn0CJyGOiY6NgdxXez5iamA2DbNXK1iCjN8IiIiIq1l3/butW/np+gpciISIiovLApBcReZRTKkx6ZV6wQ5YKb28MCLF4IyQiIqJi3XF3O+S40rTyqb8zvRcMEREReRyTXkTkWbpL1kSxuSe5QiMDKjgYIiKiksmyjMA6qla2IgJ7/zzkxYiIiIjIk5j0IiKP0l2S5zIr7kmu8BrBFRwNERFR6br2v9GtvPSDtV6KhIiIiDyNSS8i8ihLgK7EfTVrR1RgJERERFfWs38n5LoytPLR31O8GA0RERF5EpNeRORRAaHmEvfVjqtRgZEQERFdmU6nwFLTrpUtaiQ2r/vNixERERGRpzDpRUQeFVLCul1CqKhVJ7KCoyEiIrqyex/t4Fb+4m3e4khEROQLmPQiIo+Kigkttt6u5kBv0FdwNERERFfWvU8HZEuJWtl+zh/nzlzwYkRERETkCUx6EZFH1Yotft0up5RXwZEQERGVXZuedbRtvWzEnDeXejEaIiIi8gQmvYjIo+IaxBRbL+mdFRwJERFR2T32Un/kujK18rFfs5GXay/lCCIiIqrsmPQiIo+KrlsDqnAVqdeZvBAMERFRGZnMRoQ3KSxblGDMGPep9wIiIiKi68akFxF5lE6nwK5mF6k3+SleiIaIiKjsnp4wAHaXTSvv35iBlKR0L0ZERERE14NJLyLyOJdSdP0ua6DRC5EQERGVXZ34Wohopmplk+KPqc/P92JEREREdD2Y9CIij1OMRW9vDAyzeiESIiKiqzN25iPIdWVo5aRdCg7sOurFiIiIiOhaMelFRB5nsBa9tIRGBnghEiIioqsTFBKAxl2CtLJeMWHyiM+hqmrJBxEREVGlxKQXEXmcX3DRWxnDa4Z4IRIiIqKr98KkwchGolY25UVh1usLvRgRERERXQsmvYjI44LC/YrU1aoT4YVIiIiIrp7eoMewiV3hUp1a3V/fp/I2RyIioiqGSS8i8rjwGoFF6mLqRnkhEiIiomvT8c6bEdwkVysbFQvefHgRcrJtpRxFRERElQmTXkTkcTUvm9WlChdqxER6KRoiIqJr8+ZHTyJbXNDKVhGBUQ/M9F5AREREdFWY9CIij6sd7z6ry67mQKdTvBQNERHRtTGZjXj+3Xtgd+Voda5zoRj36GwvRkVERERlxaQXEXlcXMPabmWXlOelSIiIiK7Pv9o2RcchtSFE4dMbk/404fmB/8cnOhIREVVyTHoRkccFhQTA7ipc80QyuLwYDRER0fUZ8mxfhLZw/wNO9qEADL1tIhe3JyIiqsR03g6AiHyTU8qBAWYAgMHi5WCIiIiu05T5z+KVYe/gwk6jVmfKjcLUh76DPiILLTrURVhUEPwCzGh5SxPUqs21LImIiLyNSS8iKhd12/jj/O+AS3Wi030tvB0OERHRdZv40dOYOuojHElwQpby16o0KGYg2Yy/v80CkAUAWIlDsLnSYa3lwHPTBqLBDXW9GDUREVH1JQkhhLeD8CVxcXEAgKNHOdWdaOv63+EfaEXzNo28HQoREZHHbFy1HfNf3wgrwq/Y1qnmIbBBHiZ89AT8/Dn1maoffj4iIm9i0svDeFEnIiIi8n15uXa8/cqn2Lv1HAx5oVDk0m+gyBYX8MRbPdCu878qKEKiyoGfj4jIm5j08jBe1ImIiIiqlwvnU/DnL3uRk52L5PPpOPT3KZz6OwdWKcytnVO1wz8+By+9PQQ1oiO8FC1RxeLnIyLyJia9PIwXdSIiIiJyOl2YPf5z/L0qBUbF6rbP7spBVEvgpekPIygkwDsBElUQfj4iIm+SvR0AEREREZGv0ekUPD9xMF7+/F7Y9Ofd9hkUC1J2WfDsHR9h5mufQVVVL0VJRETk25j0IiIiIiIqJw1uqIv5m19G47tMyHGluu0zKf7Y90MuHr59Eo4ePOWlCImIiHwXk15EREREROVIp1MwcsJD+GjbSMS0V5HrynTbb8yJxIQHvsK7b37hpQiJiIh8E5NeREREREQVwGQ24pVZIzBrwzD41c+EKlzaPqNixa4V2Rh86wT8/OOvXoySiIjIdzDpRURERERUgYJCAjB98Qt44PXmyBZJbvtMuVH4YtxOPNzpTez6/YCXIiQiIvINTHoREREREXlBl97t8eGm52Ctl+E260uSZOgzIzFz2DqM+s905NryvBglERFR1cWkFxERERGRl1isZsxYMgr9X2tW5CmPOtmAzAP+GN7pvzh35oKXIiQiIqq6mPQiIiIiIvKyrvfcis+2v4ruz8QiW0p022d2RmLU3R9j986DXoqOiIioamLSi4iIiIiokuj7UDd8sn0sGnY3wOHK1eqtciimPfwNDuw66sXoiIiIqhYmvYiIiIiIKhGdTsHzk4bgwUk3weZK1+otSjAmDl6KowdPeTE6IiKiqoNJLyIiIiKiSqjTXbdg3Gf9kONK0eoscihef2ARNq/7zYuRERERVQ1MehERERERVVINm8Xhpfl9YXOlaXUWJRgLRm/Df1+ah7xcu/eCIyIiquSY9CIiIiIiqsSatmqA597vhRxXqlanV0w4ssGFR9u+jTFDZmLTmh1QVdWLURIREVU+khBCeDsIXxIXFwcAOHqUi4wSERERkeecPn4OYwd8BIszstj9dlcOHLosGPwEDGYF/iEmRMYEo0Hz2uh2760wmY0VHDERPx8RkXcx6eVhvKgTERERUXnJteVh3MPvIvWAHnrZVObj7C4bhF866v0rAj0H3oZWtzQpxyiJCvHzERF5E5NeHsaLOhERERGVt9PHz2Hmy1/g/D4nLErwVR+f40qFJdKJei1roHWHxmjdvikCg/zLIVKq7vj5iIi8iUkvD+NFnYiIiIgqiqqq2L5xJ9Z98yvOHk1FTrIK4dRBEQYYZSskqexL+NpdNjilHEDvhN4MmPx0sAYbERhqRXiNIMQ3jkbzNo0QUSO0HM+IfA0/HxGRNzHp5WG8qBMRERFRZZCTbcOenYfw0/e/Yd+vZ6Cm+cGoWK+73zxXNpxKNhSjCp1JhqyU0li4bwqXgOoChCogVOR/CQko+BeAJAlAAiQZgCQgyYAkS5Ak5Nfj4r8SAOmS+vzDIbnV5Ve6nCpcdgGXQ0B1ShAuCVBlSJABCAgIQCr4uiQG6dIYLvZdsC1LV36zyvpJS770vAreB1ysvKyuoF3BmyEVvLmAEAJBERZMWTCyjC9c/vj5iIi8iUkvDzObzXA6nYiJifF2KEREREREbmzZubDl5MHlEICQ8xMn5FMEXAivFeTtMDSnTp2CTqeDzWbzdihEVA3pvB2ArzEaK+dTcU6dOgUATMZVERyvqoXjVbVwvKoWjlfVwvGq/MxWE8zW/AXwOV5VR1UeK51OV2k/IxGR7+NMr2qC04qrFo5X1cLxqlo4XlULx6tq4XhVLRyvqoNjRUR0bcq+siUREREREREREVEVwaQXERERERERERH5HCa9iIiIiIiIiIjI5zDpRUREREREREREPodJLyIiIiIiIiIi8jlMehERERERERERkc+RhBDC20EQERERERERERF5Emd6ERERERERERGRz2HSi4iIiIiIiIiIfA6TXkRERERERERE5HOY9CIiIiIiIiIiIp/DpBcREREREREREfkcJr2qgf3796Nr166wWq2IiorC6NGjYbfbvR2WT1i2bBnuueceREdHw2q1omXLlpg/fz4ufyjqvHnz0KBBA5hMJrRo0QLff/99kb7S09PxyCOPICQkBP7+/rjvvvtw9uzZIu22bduGtm3bwmw2o06dOpg2bVqR1xNCYOrUqahduzbMZjPatm2LX375xbMn7wOysrIQHR0NSZLw22+/ue3jmFUen376KVq1agWTyYSwsDD06NEDNptN2//dd9+hRYsWMJlMaNCgARYsWFCkD7vdjhdffBFRUVGwWq3o2rUrDhw4UKRdWa+XZfn+qI5WrlyJm2++Gf7+/qhRowb69++Po0ePFmnHn6+Kd/jwYYwYMQItW7aETqdD06ZNi21XWcfmn3/+Qb9+/eDv74+QkBA8+uijyMjIuMZ3o3K70lhlZGRg/PjxuOmmmxAUFITIyEjcfffd2LVrV5G+OFblr6w/WwW+/fZbSJJUbDuOFxFRORDk01JSUkSNGjXEbbfdJn788Ucxb948ERgYKJ588klvh+YTbrnlFjFgwACxZMkSsWHDBjFmzBghy7IYP3681mbx4sVCkiTxyiuviI0bN4rHHntM6HQ6sX37dre+unfvLqKjo8XSpUvFihUrRNOmTUWLFi2Ew+HQ2hw6dEj4+fmJPn36iPXr14sZM2YIg8Eg3nrrLbe+pkyZIgwGg5gxY4ZYv3696NOnj/D39xdHjhwp3zekihk9erSIjIwUAMSOHTu0eo5Z5TFx4kTh7+8vpkyZIn766Sfx1Vdficcff1xkZmYKIYTYvHmzUBRFPPbYY2Ljxo3ilVdeEZIkiWXLlrn189hjj4nAwEAxb9488eOPP4oOHTqIWrVqibS0NK1NWa+XZf3+qG4SEhKELMtiyJAhYt26dWLJkiWiQYMGIj4+XuTk5Gjt+PPlHd9++62Ijo4W/fr1E82aNRM33HBDkTaVdWzsdrto2rSpaNq0qVi5cqVYsmSJiI6OFj179vTwu1Q5XGmsdu3aJaKiosS4cePEmjVrxIoVK0SHDh2ExWIRe/fudWvLsSp/ZfnZKpCTkyNiY2NFZGRkse04XkREnsekl4+bPHmysFqtIjk5Wav74IMPhKIo4syZM16MzDdcuHChSN2wYcNEQECAcLlcQgghGjRoIAYOHOjWpm3btqJHjx5aedu2bQKAWLNmjVa3f/9+IUmSWLp0qVY3fPhwUadOHZGXl6fVjR07VgQFBYnc3FwhhBA2m00EBASIsWPHam3y8vJEnTp1xOOPP36dZ+w79u3bJ6xWq5g7d26RpBfHrHLYv3+/0Ol04ocffiixTbdu3US7du3c6gYOHCgaN26slU+dOiUURREffPCBVpecnCysVquYNm2aVlfW62VZvj+qo8cee0zUrVtXqKqq1W3cuFEAEJs2bdLq+PPlHQX/JwkhxODBg4v9wF1Zx2bRokVCkiSxf/9+rW7NmjUCgPj111+v6n2oCq40VllZWSI7O9utLjMzU4SEhIinnnpKq+NYVYyy/GwVePXVV8Vtt91WbDuOFxFR+eDtjT5u9erV6NKlC0JCQrS6/v37Q1VVrF271ouR+YawsLAida1atUJGRgays7Nx9OhRHDx4EP3793drM2DAAGzYsAF5eXkA8scpKCgIXbt21do0bNgQLVu2xA8//KDVrV69Gvfeey8MBoNbX2lpadi+fTuA/CnvGRkZbq9pMBjQt29ft76qu6effhojRoxAw4YN3eo5ZpXHggULULduXfTo0aPY/Xl5eUhISMD999/vVj9gwADs27cPx48fBwCsXbsWqqq6tQsJCUG3bt2KjNWVrpdl/f6ojhwOB/z9/SFJklYXGBgIANptN/z58h5ZLv1Xvso8NqtXr0bz5s3drtddu3ZFSEiIT47hlcbKarXCYrG41fn5+aFevXr4559/tDqOVcW40ngVOHLkCKZPn47Zs2cXu5/jRURUPpj08nH79+9Ho0aN3OqCgoJQo0YN7N+/30tR+bYtW7agVq1a8Pf3197jy8egcePGsNvtOHbsGID8cWrYsKHbh8WCdgV9ZGdn49SpU0X6atSoESRJ0tqV9ponT550Wwupuvrqq6+wa9cuvPbaa0X2ccwqj19++QXNmjXDxIkTERERAYPBgPbt2+PXX38FkP8BwuFwFPu+AXB7fyMiIhAcHFyk3aXXwbJcL8v6/VEdDRkyBHv37sWcOXOQnp6Oo0eP4uWXX0arVq3Qvn17APz5qswq89gU97MpSRIaNWrE32UuSktLw+7du7XrH8CxqmyeffZZPPTQQ2jRokWx+zleRETlg0kvH5eamoqgoKAi9cHBwUhJSan4gHzcli1bsGTJEowaNQpA/vsPoMgYFHz4LhiDsoxTWlpasX0ZDAZYLBa3voxGI0wmU5G+hBBaTNVVTk4Onn/+eUyePBkBAQFF9nPMKo9z585h7dq1+OyzzzBnzhxt8d9u3bohMTHRo2NV1nZlfc3qqEOHDvjmm28wZswYBAUFIT4+HufPn8fq1auhKAoA/nxVZpV5bPi7zJWNHj0akiRhxIgRWh3HqvL47rvvsG3bNrz55psltuF4ERGVDya9iDzk9OnTeOCBB9CpUyc888wz3g6HSjBx4kRERkZi6NCh3g6FrkBVVWRlZeGrr77Cfffdh7vuugsrV66EEALvvvuut8Ojy2zbtg0PPvgghg0bho0bN2LZsmVQVRU9e/bkbCqicrRgwQJ89NFHeO+99xAdHe3tcOgyubm5GDlyJN54441il8UgIqLyxaSXjwsODkZ6enqR+tTUVLd1a+j6pKWloUePHggNDcXy5cu19R0K/kJ++RgU/IWtYAzKMk4Ff4m7vJ3dbkdOTo5bX3l5ecjNzS3SlyRJRW7xqk5OnDiB6dOn44033kB6ejrS0tKQlZUFAMjKykJWVhbHrBIJDg5GaGgomjdvrtWFhISgVatW2LNnj0fHqqztyvqa1dEzzzyDzp07Y/r06ejUqRPuu+8+rFq1Cn/88QcWLlwIgNfEyqwyjw1/lynZ6tWrMXz4cLz66qsYPHiw2z6OVeUwc+ZMyLKMgQMHIi0tDWlpabDb7VBVVdsGOF5EROWFSS8fV9w9+enp6Th79myRe/jp2thsNvTq1Qvp6elYvXq1tnAzULiWwuVjsH//fhgMBsTFxWntDhw4oC32fGm7gj6sVitiYmKK9FVwXEG7gn8PHDhQpK/atWvDbDZf7ylXWceOHYPdbkfPnj0RHByM4OBg3H333QCATp06oUuXLhyzSuSGG24ocV9ubi7i4+Oh1+uLHSsAbu/v+fPni9zGdvlaJmW5Xpb1+6M62rt3L1q2bOlWFx0djbCwMBw5cgQAr4mVWWUem+J+NoUQOHDgQLX+XeaXX37Bfffdh8GDB2PChAlF9nOsKof9+/fj8OHDCA8P1373WLx4Mfbt24fg4GDMnz8fAMeLiKi8MOnl43r06IH169drawAAwLJlyyDLMrp16+a9wHyE0+lE//79sW/fPvz444+oVauW2/64uDg0aNAAy5Ytc6tfunQp7rjjDu3JOz169EBqaio2bNigtTl48CB27tyJu+66S6vr0aMHVqxYAYfD4dZXUFAQ2rVrBwBo164dAgIC3F7T4XDg66+/duurOmrZsiUSEhLcvt5++20AwNy5czFnzhyOWSXSq1cvJCcn488//9TqkpOT8ccff6B169YwGo3o1KkTvvrqK7fjli5disaNGyM2NhYA0K1bN8iyjOXLl2ttUlNTsXbt2iJjdaXrZVm/P6qjOnXq4I8//nCrO3HiBJKSkrSx4M9X5VWZx6ZHjx7466+/cOjQIa1uw4YNSE5OrrZjuHfvXvTs2ROdO3fG3Llzi23DsaocxowZU+R3j+7duyM2NhYJCQno3bs3AI4XEVG5EeTTUlJSRI0aNUTHjh3FmjVrxPz580VQUJB48sknvR2aTxg2bJgAIKZPny62b9/u9pWbmyuEEGLRokVCkiTx2muviYSEBDFixAih0+nEtm3b3Prq3r27iImJEV9++aVYuXKlaNasmWjRooVwOBxam0OHDgmr1Sr69esnNmzYIGbOnCkMBoN466233PqaMmWKMBqNYubMmWLDhg2iX79+wt/fXxw5cqT835QqJiEhQQAQO3bs0Oo4ZpWDy+USbdq0EfHx8WLJkiVixYoV4pZbbhGhoaHi7NmzQgghNm/eLBRFEY8//rhISEgQr732mpAkSXz55ZdufT322GMiKChIzJ8/X6xZs0Z07NhR1KpVS6SlpWltynq9LOv3R3Uzc+ZMAUA888wzYt26dWLJkiWiadOmIjIyUiQlJWnt+PPlHdnZ2WLZsmVi2bJl4vbbbxcxMTFaOTExUQhRecfGbreLpk2bimbNmonvvvtOLF26VMTExIiePXuW4zvmPVcaq/Pnz4vo6GhRq1YtsWHDBrffPfbs2ePWF8eq/JXlZ+tygwcPFjfccEOReo4XEZHnMelVDezdu1fccccdwmw2i4iICDFq1CiRl5fn7bB8Qp06dQSAYr+OHTumtfv4449FvXr1hMFg0H6xuFxaWpp4+OGHRVBQkPDz8xN9+/YVZ86cKdJu69at4uabbxZGo1FER0eLKVOmCFVV3dqoqiomT54soqOjhdFoFDfffHO1/0BekuKSXkJwzCqLCxcuiEGDBonAwEBhNptFt27dinyoW7FihWjWrJkwGAyiXr16Yt68eUX6yc3NFS+88IKIiIgQZrNZdOnSRezbt69Iu7JeL8vy/VHdqKoq3n//fdG8eXNhtVpFVFSU6NOnT7HvM3++Kt6xY8dK/P8qISFBa1dZx+b06dOib9++ws/PTwQFBYmHH35YpKenX/8bUwldaawK/t8q7qtjx45ufXGsyl9Zf7YuVVLSi+NFROR5khCX3ThORERERERERERUxXFNLyIiIiIiIiIi8jlMehERERERERERkc9h0ouIiIiIiIiIiHwOk15ERERERERERORzmPQiIiIiIiIiIiKfw6QXERERERERERH5HCa9iIiIiIiIiIjI5zDpRUREREREREREPodJLyIi8pjx48dDkiRvh1El/PTTT5AkCT/99JO3QynVoUOH0K1bNwQGBkKSJHz77bf45JNPIEkSjh8/XmFxSJKE8ePHa2VvxHApVVXRtGlTTJo0yWN97t27FzqdDrt37/ZYn0RERETVGZNeRERUrIKkQsGXyWRCzZo10b17d8yePRuZmZkeeZ1//vkH48ePx59//umR/sizBg8ejF27dmHSpElYuHAhbrzxRm+HVCksXrwYp06dwlNPPeWxPps0aYKePXvitdde81ifRERERNUZk15ERFSqCRMmYOHChXj//ffx9NNPAwBGjhyJZs2a4e+//3Zr+8orr8Bms11V///88w/eeOMNJr0qIZvNhu3bt+ORRx7BU089hUGDBiE6OtrbYQEAHnzwQdhsNtSpU8crr//WW29hwIABCAwM9Gi/I0aMwDfffIMjR454tF8iIiKi6ohJLyIiKlWPHj0waNAgDB06FGPHjsWaNWuwfv16JCYmonfv3m5JLp1OB5PJ5MVoyZMuXLgAAAgKCvJuIMVQFAUmk8krt9Pu3LkTf/31F/r37+/xvrt06YLg4GB8+umnHu+biIiIqLph0ouIiK5a586d8eqrr+LEiRP4/PPPtfri1vRat24dbr31VgQFBcHPzw8NGzbEyy+/DCB/Xas2bdoAAIYOHardSvnJJ58AADZv3oz7778ftWvXhtFoRExMDJ577rkis8mGDBkCPz8/nDlzBvfeey/8/PwQHh6OUaNGweVyubVVVRWzZs1Cs2bNYDKZEB4ejjvvvBO//fabW7vPP/8crVu3htlsRkhICAYMGIBTp05d8b05ceIEnnjiCTRs2BBmsxmhoaG4//77y7z21LJly7TXDQsLw6BBg3DmzJlrPt/k5GQ8+OCDCAgIQFBQEAYPHoy//vrL7X0uzvjx47VZVC+++CIkSUJsbGypsc+ZMwc33HADjEYjatasiSeffBJpaWna/tmzZ0NRFLe66dOnQ5IkPP/881qdy+WCv78/XnrppRJfq7g1vWJjY9GrVy9s2bIFN910E0wmE+Li4vDZZ58VOT4tLQ0jR45ETEwMjEYj6tWrh2nTpkFV1VLPEQC+/fZbGAwG3HbbbW71Bd//Bw8exKBBgxAYGIjw8HC8+uqrEELg1KlTuOeeexAQEICoqChMnz69SN96vR633347VqxYccU4iIiIiKh0THoREdE1efDBBwEAa9euLbHNnj170KtXL+Tl5WHChAmYPn06evfuja1btwIAGjdujAkTJgAAhg8fjoULF2LhwoVaMmHZsmXIycnB448/jnfeeQfdu3fHO++8g4ceeqjIa7lcLnTv3h2hoaH4v//7P3Ts2BHTp0/Hhx9+6NbukUce0ZId06ZNw5gxY2AymfDLL79obSZNmoSHHnoI9evXx4wZMzBy5Ehs2LABt912m1vCpjg7duzAtm3bMGDAAMyePRsjRozAhg0bcPvttyMnJ6fUYz/55BP0798fiqJgypQpGDZsGL7++mvceuutRV63LOerqiruvvtuLF68GIMHD8akSZNw9uxZDB48uNQ4AKBv3754++23AQADBw7EwoULMXPmzBLbjx8/Hk8++SRq1qyJ6dOno1+/fvjggw/QrVs3OBwOAECHDh2gqiq2bNmiHbd582bIsozNmzdrdTt37kRWVlaRpFJZHD58GPfddx+6du2K6dOnIzg4GEOGDMGePXu0Njk5OejYsSM+//xzPPTQQ5g9ezbat2+PsWPHuiXfSrJt2zY0bdoUer2+2P0PPPAAVFXF1KlTcfPNN2PixImYOXMmunbtilq1amHatGmoV68eRo0ahU2bNhU5vnXr1ti9ezcyMjKu+vyJiIiI6BKCiIioGAsWLBAAxI4dO0psExgYKFq1aqWVX3/9dXHpfy1vv/22ACAuXLhQYh87duwQAMSCBQuK7MvJySlSN2XKFCFJkjhx4oRWN3jwYAFATJgwwa1tq1atROvWrbXyxo0bBQDxzDPPFOlXVVUhhBDHjx8XiqKISZMmue3ftWuX0Ol0RerLEvP27dsFAPHZZ59pdQkJCQKASEhIEEIIYbfbRUREhGjatKmw2Wxau++//14AEK+99tpVn+/y5csFADFz5kytzuVyic6dO5f4nl/q2LFjAoB466233OoLvjeOHTsmhBAiMTFRGAwG0a1bN+FyubR27777rgAg5s+fr712QECAGD16tBAi/z0PDQ0V999/v1AURWRmZgohhJgxY4aQZVmkpqZqfQEQr7/+eokxCCFEnTp1BACxadMmrS4xMVEYjUbxwgsvaHVvvvmmsFqt4uDBg27nNWbMGKEoijh58mSp70t0dLTo169fkfqC7//hw4drdU6nU0RHRwtJksTUqVO1+tTUVGE2m8XgwYOL9LNo0SIBQPz666+lxkFEREREpeNMLyIiumZ+fn6lPsWxYC2oFStWlOm2scuZzWZtOzs7G0lJSWjXrh2EENi5c2eR9iNGjHArd+jQAUePHtXKy5cvhyRJeP3114scW3Bb5tdffw1VVdG/f38kJSVpX1FRUahfvz4SEhLKHLPD4UBycjLq1auHoKAg/PHHHyUe99tvvyExMRFPPPGE27poPXv2RKNGjbBq1aqrPt8ff/wRer0ew4YN0+pkWcaTTz5Z6jlcrfXr18Nut2PkyJGQ5cJfLYYNG4aAgAAtdlmW0a5dO2120759+5CcnIwxY8ZACIHt27cDyJ/91bRp02taS6xJkybo0KGDVg4PD0fDhg3d3pdly5ahQ4cOCA4OdhvjLl26wOVyFTv76lLJyckIDg4ucf+jjz6qbSuKghtvvBFCCDzyyCNafVBQUJG4ChT0nZSUdOUTJiIiIqISMelFRETXLCsrC/7+/iXuf+CBB9C+fXs8+uijiIyMxIABA/Dll1+WOQF28uRJDBkyBCEhIdq6VR07dgQApKenu7UtWJ/rUsHBwUhNTdXKR44cQc2aNRESElLiax46dAhCCNSvXx/h4eFuX/v27UNiYmKpMdtsNrz22mvaWlFhYWEIDw9HWlpakZgvdeLECQBAw4YNi+xr1KiRtv9qzvfEiROoUaMGLBaLW7t69eqVeg5Xq6TYDQYD4uLi3GLv0KEDfv/9d9hsNmzevBk1atTAv/71L7Ro0UK7xXHLli1uiaurUbt27SJ1l78vhw4dwo8//lhkfLt06QIAVxxjABBClDmGwMBAmEwmhIWFFam/NK7L+/bGIv1EREREvkTn7QCIiKhqOn36NNLT00tNoJjNZmzatAkJCQlYtWoVfvzxRyxduhSdO3fG2rVroShKice6XC507doVKSkpeOmll9CoUSNYrVacOXMGQ4YMKZI4K62vq6GqKiRJwurVq4vt08/Pr9Tjn376aSxYsAAjR45E27ZtERgYCEmSMGDAgGua7VYST51vRbv11lvhcDiwfft2bN68WUtudejQAZs3b8b+/ftx4cKFa056lfS+XJqkUlUVXbt2xejRo4tt26BBg1JfIzQ0tNhkVWkxlCWuAgV9X54kIyIiIqKrw6QXERFdk4ULFwIAunfvXmo7WZZxxx134I477sCMGTMwefJkjBs3DgkJCejSpUuJs1l27dqFgwcP4tNPP3VbuH7dunXXHHN8fDzWrFmDlJSUEmd7xcfHQwiBunXrXjH5UZyvvvoKgwcPdnsyX25u7hUXwC94UuKBAwfQuXNnt30HDhzQ9l+NOnXqICEhATk5OW6zvQ4fPnzVfV3pdYD8OOPi4rR6u92OY8eOaTOoAOCmm26CwWDA5s2bsXnzZrz44osAgNtuuw0fffQRNmzYoJXLS3x8PLKystziuhqNGjXCsWPHPBxVoWPHjkGW5Wv6/iMiIiKiQry9kYiIrtrGjRvx5ptvom7duvjPf/5TYruUlJQidS1btgQA5OXlAQCsVisAFEkKFcyMuXQmjBACs2bNuua4+/XrByEE3njjjSL7Cl6nb9++UBQFb7zxRpFZOEIIJCcnl/oaiqIUOe6dd96By+Uq9bgbb7wRERERmDt3rvbeAMDq1auxb98+9OzZs9Tji9O9e3c4HA589NFHWp2qqnjvvfeuuq/SdOnSBQaDAbNnz3Y793nz5iE9Pd0tdpPJhDZt2mDx4sU4efKk20wvm82G2bNnIz4+HjVq1PBojJfq378/tm/fjjVr1hTZl5aWBqfTWerxbdu2xe7du93GyZN+//133HDDDQgMDCyX/omIiIiqC870IiKiUq1evRr79++H0+nE+fPnsXHjRqxbtw516tTBypUr3RZdv9yECROwadMm9OzZE3Xq1EFiYiLmzJmD6Oho3HrrrQDyZ90EBQVh7ty58Pf3h9Vqxc0334xGjRohPj4eo0aNwpkzZxAQEIDly5eXelvZlXTq1AkPPvggZs+ejUOHDuHOO++EqqrYvHkzOnXqhKeeegrx8fGYOHEixo4di+PHj+Pee++Fv78/jh07hm+++QbDhw/HqFGjSnyNXr16YeHChQgMDESTJk2wfft2rF+/HqGhoaXGptfrMW3aNAwdOhQdO3bEwIEDcf78ecyaNQuxsbF47rnnrvp87733Xtx000144YUXcPjwYTRq1AgrV67UkpGeWjMqPDwcY8eOxRtvvIE777wTvXv3xoEDBzBnzhy0adMGgwYNcmvfoUMHTJ06FYGBgWjWrBkAICIiAg0bNsSBAwcwZMgQj8RVkhdffBErV65Er169MGTIELRu3RrZ2dnYtWsXvvrqKxw/frzUWwvvuecevPnmm/j555/RrVs3j8bmcDjw888/44knnvBov0RERETVEZNeRERUqtdeew1A/qLkISEhaNasGWbOnImhQ4eWuog9APTu3RvHjx/H/PnzkZSUhLCwMHTs2BFvvPGGNotFr9fj008/xdixYzFixAg4nU4sWLAAQ4YMwXfffYdnnnkGU6ZMgclkQp8+ffDUU0+hRYsW13w+CxYsQPPmzTFv3jy8+OKLCAwMxI033oh27dppbcaMGYMGDRrg7bff1maFxcTEoFu3bujdu3ep/c+aNQuKouCLL75Abm4u2rdvj/Xr11/xNlAAGDJkCCwWC6ZOnYqXXnoJVqsVffr0wbRp067pSYaKomDVqlV49tln8emnn0KWZfTp0wevv/462rdvX2rC8mqNHz8e4eHhePfdd/Hcc88hJCQEw4cPx+TJk6HX693aFiS92rVr5/a0xw4dOuDAgQPXvJ5XWVksFvz888+YPHkyli1bhs8++wwBAQFo0KCB2/dmSVq3bo3mzZvjyy+/9HjSa8OGDUhJScHgwYM92i8RERFRdSSJ0h4/RERERD7n22+/RZ8+fbBlyxa0b9/e2+FUSQsXLsSTTz6JkydPXlNCsiT33nsvJEnCN99847E+iYiIiKorJr2IiIh8mM1mg9ls1soulwvdunXDb7/9hnPnzrnto7JTVRXNmzfHwIEDMW7cOI/0uW/fPjRr1gx//vknmjZt6pE+iYiIiKoz3t5IRETkw55++mnYbDa0bdsWeXl5+Prrr7Ft2zZMnjyZCa/rIMsydu/e7dE+GzdufMVF9ImIiIio7DjTi4iIyIctWrQI06dPx+HDh5Gbm4t69erh8ccfx1NPPeXt0IiIiIiIyhWTXkRERERERERE5HPkKzchIiIiIiIiIiKqWpj0IiIiIiIiIiIin8OkFxERERERERER+RwmvYiIiIiIiIiIyOcw6UVERERERERERD6HSS8iIiIiIiIiIvI5THoREREREREREZHPYdKLiIiIiIiIiIh8zv8DMEl2DrasT7EAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gdirs= workflow.init_glacier_directories(rgi_ids)\n", "\n", "for gdir in gdirs:\n", " fls = gdir.read_pickle('model_flowlines')\n", " graphics.plot_modeloutput_section(fls);\n", " print(gdir.rgi_id,gdir.name)" ] }, { "cell_type": "code", "execution_count": null, "id": "d6d5e2a0-7ce7-4579-b6c5-e770a5921e2d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 13, "id": "e5f8e6a4-cb8e-41df-83d0-64ee17f18047", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-04-09 15:33:02: oggm.cfg: PARAMS['temp_default_gradient'] changed from `-0.0055` to `-0.0065`.\n" ] } ], "source": [ "oggm.cfg.PARAMS['temp_default_gradient'] = -0.0065" ] }, { "cell_type": "code", "execution_count": 14, "id": "a6a91d24-ca81-4747-baf7-c7bc411d9e69", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\u001b[0;31mSignature:\u001b[0m\n", "\u001b[0mtasks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_with_hydro\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mgdir\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mrun_task\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mstore_monthly_hydro\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mfixed_geometry_spinup_yr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mref_area_from_y0\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mref_area_yr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mref_geometry_filesuffix\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mDocstring:\u001b[0m\n", "Run the flowline model and add hydro diagnostics.\n", "\n", "TODOs:\n", " - Add the possibility to record MB during run to improve performance\n", " (requires change in API)\n", " - ...\n", "\n", "Parameters\n", "----------\n", "run_task : func\n", " any of the `run_*`` tasks in the oggm.flowline module.\n", " The mass balance model used needs to have the `add_climate` output\n", " kwarg available though.\n", "store_monthly_hydro : bool\n", " also compute monthly hydrological diagnostics. The monthly outputs\n", " are stored in 2D fields (years, months)\n", "ref_area_yr : int\n", " the hydrological output is computed over a reference area, which\n", " per default is the largest area covered by the glacier in the simulation\n", " period. Use this kwarg to force a specific area to the state of the\n", " glacier at the provided simulation year.\n", "ref_area_from_y0 : bool\n", " overwrite ref_area_yr to the first year of the timeseries\n", "ref_geometry_filesuffix : str\n", " this kwarg allows to copy the reference area from a previous simulation\n", " (useful for projections with historical spinup for example).\n", " Set to a model_geometry file filesuffix that is present in the\n", " current directory (e.g. `_historical` for pre-processed gdirs).\n", " If set, ref_area_yr and ref_area_from_y0 refer to this file instead.\n", "fixed_geometry_spinup_yr : int\n", " if set to an integer, the model will artificially prolongate\n", " all outputs of run_until_and_store to encompass all time stamps\n", " starting from the chosen year. The only output affected are the\n", " glacier wide diagnostic files - all other outputs are set\n", " to constants during \"spinup\"\n", "**kwargs : all valid kwargs for ``run_task``\n", "\n", "Notes\n", "-----\n", "Files written to the glacier directory:\n", "\u001b[0;31mFile:\u001b[0m ~/.local/lib/python3.10/site-packages/oggm/core/flowline.py\n", "\u001b[0;31mType:\u001b[0m function" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tasks.run_with_hydro?" ] }, { "cell_type": "code", "execution_count": 12, "id": "15277e6a-40b0-4bd8-b540-001e6988f32e", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-04-09 11:00:14: oggm.cfg: PARAMS['temp_default_gradient'] changed from `-0.0075` to `-0.0055`.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:14: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "RGI60-11.01450\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "rel_diff_v1/v0 100000\n", "dtype: int64\n", "RGI60-04.06187\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-04.06187: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.sandbox.edu: InvalidWorkflowError occurred during task run_constant_climate_with_bias_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n", "2025-04-09 11:00:15: oggm.core.flowline: InvalidWorkflowError occurred during task run_with_hydro_spinup_-0.0055 on RGI60-11.01450: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "rel_diff_v1/v0 100000\n", "dtype: int64\n", "RGI60-11.01450\n", "RGI60-11.01450 - need temperature bias of -2.4°C to get into steady state with similarvolume as volume from inventory date\n" ] }, { "ename": "InvalidWorkflowError", "evalue": "You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mInvalidWorkflowError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[12], line 60\u001b[0m\n\u001b[1;32m 57\u001b[0m file_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_spinup\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpert\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;66;03m# We are using the task run_with_hydro to store hydrological outputs along with the usual glaciological outputs\u001b[39;00m\n\u001b[0;32m---> 60\u001b[0m \u001b[43mtasks\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_with_hydro\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Run on the selected glacier\u001b[39;49;00m\n\u001b[1;32m 61\u001b[0m \u001b[43m \u001b[49m\u001b[43mtemp_bias_ts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtemp_bias_ts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# the temperature bias to apply to the average climate\u001b[39;49;00m\n\u001b[1;32m 62\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_task\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_constant_climate_with_bias\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# which climate scenario? See following notebook for other examples\u001b[39;49;00m\n\u001b[1;32m 63\u001b[0m \u001b[43m \u001b[49m\u001b[43my0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2009\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mhalfsize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Period which we will average and constantly repeat\u001b[39;49;00m\n\u001b[1;32m 64\u001b[0m \u001b[43m \u001b[49m\u001b[43mstore_monthly_hydro\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Monthly ouptuts provide additional information\u001b[39;49;00m\n\u001b[1;32m 65\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_filesuffix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_id\u001b[49m\u001b[43m)\u001b[49m; \u001b[38;5;66;03m# an identifier for the output file, to read it later\u001b[39;00m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;66;03m# save temperature bias for steady states of the glaciers in JSON string\u001b[39;00m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdata_idealised_exps_preprocessing/idealised_equilibrium_temp_bias_pert.json\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mw\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m outfile:\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/utils/_workflow.py:496\u001b[0m, in \u001b[0;36mentity_task.__call__.._entity_task\u001b[0;34m(gdir, reset, print_log, return_value, continue_on_error, add_to_log_file, **kwargs)\u001b[0m\n\u001b[1;32m 494\u001b[0m signal\u001b[38;5;241m.\u001b[39malarm(cfg\u001b[38;5;241m.\u001b[39mPARAMS[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtask_timeout\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 495\u001b[0m ex_t \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[0;32m--> 496\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mtask_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 497\u001b[0m ex_t \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m ex_t\n\u001b[1;32m 498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cfg\u001b[38;5;241m.\u001b[39mPARAMS[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtask_timeout\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/core/flowline.py:3818\u001b[0m, in \u001b[0;36mrun_with_hydro\u001b[0;34m(gdir, run_task, store_monthly_hydro, fixed_geometry_spinup_yr, ref_area_from_y0, ref_area_yr, ref_geometry_filesuffix, **kwargs)\u001b[0m\n\u001b[1;32m 3815\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fixed_geometry_spinup_yr \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 3816\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfixed_geometry_spinup_yr\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m fixed_geometry_spinup_yr\n\u001b[0;32m-> 3818\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mrun_task\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3820\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m out \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 3821\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidWorkflowError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe run task (\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m) did not run \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 3822\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msuccessfully.\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(run_task\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m))\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/utils/_workflow.py:496\u001b[0m, in \u001b[0;36mentity_task.__call__.._entity_task\u001b[0;34m(gdir, reset, print_log, return_value, continue_on_error, add_to_log_file, **kwargs)\u001b[0m\n\u001b[1;32m 494\u001b[0m signal\u001b[38;5;241m.\u001b[39malarm(cfg\u001b[38;5;241m.\u001b[39mPARAMS[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtask_timeout\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 495\u001b[0m ex_t \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[0;32m--> 496\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mtask_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 497\u001b[0m ex_t \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m ex_t\n\u001b[1;32m 498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cfg\u001b[38;5;241m.\u001b[39mPARAMS[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtask_timeout\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/sandbox/edu.py:197\u001b[0m, in \u001b[0;36mrun_constant_climate_with_bias\u001b[0;34m(gdir, temp_bias_ts, prcp_fac_ts, ys, ye, y0, halfsize, climate_filename, climate_input_filesuffix, output_filesuffix, init_model_fls, init_model_filesuffix, init_model_yr, bias, **kwargs)\u001b[0m\n\u001b[1;32m 194\u001b[0m init_model_fls \u001b[38;5;241m=\u001b[39m fmod\u001b[38;5;241m.\u001b[39mfls\n\u001b[1;32m 196\u001b[0m \u001b[38;5;66;03m# Final crop\u001b[39;00m\n\u001b[0;32m--> 197\u001b[0m mb \u001b[38;5;241m=\u001b[39m \u001b[43mBiasedConstantMassBalance\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[43mtemp_bias_ts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtemp_bias_ts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43mprcp_fac_ts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprcp_fac_ts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[43m \u001b[49m\u001b[43my0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my0\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 202\u001b[0m \u001b[43m \u001b[49m\u001b[43mbias\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 203\u001b[0m \u001b[43m \u001b[49m\u001b[43mhalfsize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhalfsize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 204\u001b[0m \u001b[43m \u001b[49m\u001b[43mfilename\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclimate_filename\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_filesuffix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclimate_input_filesuffix\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 206\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 208\u001b[0m \u001b[38;5;66;03m# Decide from climate\u001b[39;00m\n\u001b[1;32m 209\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ye \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/sandbox/edu.py:60\u001b[0m, in \u001b[0;36mBiasedConstantMassBalance.__init__\u001b[0;34m(self, gdir, temp_bias_ts, prcp_fac_ts, bias, y0, halfsize, filename, input_filesuffix, **kwargs)\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[38;5;124;03m\"\"\"Initialize\u001b[39;00m\n\u001b[1;32m 34\u001b[0m \n\u001b[1;32m 35\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[38;5;124;03m the file suffix of the input climate file\u001b[39;00m\n\u001b[1;32m 56\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28msuper\u001b[39m(BiasedConstantMassBalance, \u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m()\n\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmbmod \u001b[38;5;241m=\u001b[39m \u001b[43mConstantMassBalance\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 61\u001b[0m \u001b[43m \u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 62\u001b[0m \u001b[43m \u001b[49m\u001b[43mbias\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 63\u001b[0m \u001b[43m \u001b[49m\u001b[43my0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my0\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 64\u001b[0m \u001b[43m \u001b[49m\u001b[43mhalfsize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhalfsize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 65\u001b[0m \u001b[43m \u001b[49m\u001b[43mfilename\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 66\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_filesuffix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_filesuffix\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 67\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 68\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 70\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalid_bounds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmbmod\u001b[38;5;241m.\u001b[39mvalid_bounds\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhemisphere \u001b[38;5;241m=\u001b[39m gdir\u001b[38;5;241m.\u001b[39mhemisphere\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/core/massbalance.py:720\u001b[0m, in \u001b[0;36mConstantMassBalance.__init__\u001b[0;34m(self, gdir, mb_model_class, y0, halfsize, **kwargs)\u001b[0m\n\u001b[1;32m 703\u001b[0m \u001b[38;5;124;03m\"\"\"Initialize\u001b[39;00m\n\u001b[1;32m 704\u001b[0m \n\u001b[1;32m 705\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 716\u001b[0m \u001b[38;5;124;03m keyword arguments to pass to the mb_model_class\u001b[39;00m\n\u001b[1;32m 717\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 719\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m()\n\u001b[0;32m--> 720\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmbmod \u001b[38;5;241m=\u001b[39m \u001b[43mmb_model_class\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgdir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 721\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 723\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m y0 \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 724\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidParamsError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPlease set `y0` explicitly\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/oggm/core/massbalance.py:408\u001b[0m, in \u001b[0;36mMonthlyTIModel.__init__\u001b[0;34m(self, gdir, filename, input_filesuffix, mb_params_filesuffix, fl_id, melt_f, temp_bias, prcp_fac, bias, ys, ye, repeat, check_calib_params)\u001b[0m\n\u001b[1;32m 401\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m v \u001b[38;5;241m!=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mPARAMS[k]:\n\u001b[1;32m 402\u001b[0m msg \u001b[38;5;241m=\u001b[39m (\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mYou seem to use different mass balance parameters \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 403\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mthan used for the calibration: \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myou use cfg.PARAMS[\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m]=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcfg\u001b[38;5;241m.\u001b[39mPARAMS[k]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m while \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 405\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mit was calibrated with cfg.PARAMS[\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m]=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mv\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 406\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSet `check_calib_params=False` to ignore this \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwarning.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 408\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidWorkflowError(msg)\n\u001b[1;32m 409\u001b[0m src \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcalib_params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbaseline_climate_source\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 410\u001b[0m src_calib \u001b[38;5;241m=\u001b[39m gdir\u001b[38;5;241m.\u001b[39mget_climate_info()[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbaseline_climate_source\u001b[39m\u001b[38;5;124m'\u001b[39m]\n", "\u001b[0;31mInvalidWorkflowError\u001b[0m: You seem to use different mass balance parameters than used for the calibration: you use cfg.PARAMS['temp_default_gradient']=-0.0055 while it was calibrated with cfg.PARAMS['temp_default_gradient']=-0.0065. Set `check_calib_params=False` to ignore this warning." ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAG5CAYAAACjnRHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7OklEQVR4nO3deVxWdf7//+clm4gL4EoqBhJhLmlarqkYymDquKSWzUiLpjUfTR1TP2YumVJqmU1jatkyjY6GVi4TipqljlvljPvGoB8JSUUFXADj4vz+6Mv18wqUi8tjcPBxv92u261zzvuc6/X2AOfZOe/rfdkMwzAEAAAAU1Qo7QIAAADKE8IVAACAiQhXAAAAJiJcAQAAmIhwBQAAYCLCFQAAgIkIVwAAACYiXAEAAJjIs7QLuNP4+/srNzdXQUFBpV0KAABwUVpamnx8fJSRkVFsW8LVbyw3N1d5eXmlXQYAACiBkly7CVe/sYI7VsnJyaVcCQAAcFVoaKjLbRlzBQAAYCLCFQAAgIkIVwAAACYiXAEAAJiIcAUAAGAiwhUAAICJCFcAAAAmIlwBAACYiHAFAABgIsIVAACAiQhXAAAAJiJcAQAAmIhwBQAAYCLCFQAAgIkIVwAAACYiXAEAAJiIcAUAAGAiwhUAAICJCFcAAAAmIlwBAACYiHAFAABgIsIVAACAiQhXAAAAJiJcAQAAmIhwBQAAYCLCFQAAgIkIVwAAACYiXAEAAJiIcAUAAGAiwhUAAICJCFcAAAAmIlwBAACYiHAFAABgIsIVAACAiQhXAAAAJiJcAQAAmIhwBQAAYCLLhiu73a5Zs2apY8eOqlGjhgIDAxUZGamtW7cWu29ycrJ69OihevXqqWLFirrrrrvUv39/HTt2rFDbI0eOqGvXrvLz81OdOnU0btw4Xbt27XZ0CQAAlAOWDVfZ2dmKi4tTy5Yt9cknn2jp0qUKCAhQZGSkvv7665vue/nyZdWpU0dxcXFat26d3nzzTR09elSRkZFKT093tLt48aK6dOmia9eu6fPPP9fMmTO1aNEijRkz5nZ3DwAAWJTNMAyjtItwh91uV1ZWlgICApzWNWnSRGFhYVqzZk2Jjnf8+HGFh4dryZIlGjRokCQpLi5OM2bM0KlTpxQYGChJWrRokV544QWdOnVKd911V4nrDg0NlfTL3TMAAGANJbl+W/bOlYeHh1OwKljXrFkznT59usTHq169uiQ5PfJLSEhQVFSUI1hJ0oABA5Sfn6/ExEQ3KwcAAOWZZ2kXYKa8vDzt3LlTDz/8sEvt8/PzZbfblZqaqokTJ6p+/frq06ePY/uRI0f0zDPPOO3j7++voKAgHTly5IbHLUi3RUlJSVH9+vVdqg8AAFiPZe9cFWXWrFlKTU3V6NGjXWo/ePBgeXt7KyQkRLt379bGjRtVrVo1x/aLFy/K39+/0H4BAQG6cOGCWWUDAIBypEzducrMzFRaWlqx7UJDQ+Xt7e20bsOGDZoyZYomT56sli1buvR+06dP14svvqhTp07p7bffVlRUlLZt26bg4GC36i9ws+exN7urBQAArK9Mhav4+HgNHTq02HaHDx9WRESEY3nPnj3q16+fBg0apMmTJ7v8fiEhIQoJCdGDDz6omJgY3XPPPZo1a5beffddSb/cocrMzCy038WLF53GYQEAABQoU48FhwwZIsMwin1dH6ySkpIUExOjdu3a6YMPPnD7vStVqqRGjRopKSnJsS4iIqLQ2KqCu2vX1wAAAFCgTIWrkkpLS1O3bt0UHBysFStWyMvLy+1jZWVlad++fU6P7WJiYrRx40ZlZGQ41sXHx6tChQrq1q3brZQOAADKKcvOc5Wdna22bdsqOTlZS5YsUc2aNR3bfHx81KJFC8eyp6enYmNjtXjxYknS1KlTlZmZqfbt26tmzZo6efKk3nnnHSUlJem7775TeHi4pF8e/zVu3Fjh4eGaOHGiUlNTNWbMGD355JOOR4clxTxXAABYT0mu32VqzFVJnDlzRnv37pUk9erVy2lbgwYNdPLkScey3W6X3W53LD/wwAN666239Omnn+ry5cuqW7euOnbsqPj4eKc7VwEBAdq0aZNGjBih3r17q0qVKhoyZIhmzJhxezsHAAAsy7J3rqyKO1cAAFjPHTFDOwAAQFlEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARJ63snN6errS09Nls9lUo0YNVa9e3ay6AAAALKlE4erKlSuKj4/XqlWrtH37dqWnpzttr1Gjhtq2bavevXurf//+8vPzM7VYAACAss5mGIZRXKPz588rLi5OCxcuVE5Ojpo1a6aWLVsqNDRUAQEBMgxDFy9e1IkTJ/TDDz9o3759qlixooYNG6YJEyaoRo0av0VfLCE0NFSSlJycXMqVAAAAV5Xk+u3Snau7775bYWFhmj17tvr166eaNWvetP25c+e0cuVKLVq0SIsWLVJWVpYrbwMAAGB5Lt25Wr9+vaKjo916g1vZtzzizhUAANZTkuu3S+EK5iFcAQBgPSW5fpdoKoadO3fq+++/v2mb77//Xrt27SrJYQEAAMoNl8PV5s2b1b59ex09evSm7Y4ePap27dpp27Ztt1wcAACA1bj8WHDgwIE6ceKEdu/eXWzbNm3aKDQ0VEuXLr3lAssbHgsCAGA9t+Wx4LZt29SnTx+X2vbu3Vtbtmxx9dAAAADlhsvhKj09XUFBQS61rVOnjs6dO+d2UQAAAFblcriqWrWqfvrpJ5fa/vTTT6patarbRQEAAFiVy+HqwQcf1IoVK1xqu2LFCrVq1crtogAAAKzK5XA1dOhQ7dmzR2PHjtWNxsAbhqGXXnpJ//73v/Xcc8+ZViQAAIBVuByu+vTpo9jYWL311ltq2rSpZs6cqdWrV2vz5s1avXq1ZsyYoaZNm+rNN9/UH//4R5cHv7vLbrdr1qxZ6tixo2rUqKHAwEBFRkZq69atxe6bnJysHj16qF69eqpYsaLuuusu9e/fX8eOHXNq9/HHH8tmsxV6TZgw4XZ1CwAAWJxL3y1Y4KOPPlLjxo31+uuva9KkSbLZbI5thmEoICBAr7/+ul566SXTC/217OxsxcXF6amnntL48ePl4eGhRYsWKTIyUomJierSpcsN9718+bLq1KmjuLg41a9fX2lpaYqLi1NkZKT27t1b6Ium161bp2rVqjmW69ate9v6BQAArM2tr7/JycnRtm3bdPjwYWVlZalq1aqKiIhQhw4d5OvrezvqLMRutysrK0sBAQFO65o0aaKwsDCtWbOmRMc7fvy4wsPDtWTJEg0aNEjSL3eunn76aZ07d65Q4HIX81wBAGA9Jbl+l+jOVYGKFSsqKipKUVFR7uxuCg8PD6dgVbCuWbNmSkpKKvHxqlevLkm6du2aKfUBAIA7k1vhqqzKy8vTzp079fDDD7vUPj8/X3a7XampqZo4caLq169f5Fixxo0bKz09XQ0aNNDQoUM1btw4eXh43PC4Bem2KCkpKapfv75L9QEAAOtxeUB7amqqHn30UVWrVk2tWrUqk1/OPGvWLKWmpmr06NEutR88eLC8vb0VEhKi3bt3a+PGjU5jq4KCgjRt2jT97W9/U0JCgrp3765JkybpxRdfvF1dAAAAFufymKtOnTqpVq1aWrx4sWbNmqVFixbpxIkT8vPzM62YzMxMpaWlFdsuNDRU3t7eTus2bNig7t2765VXXtHkyZNder8TJ04oPT1dp06d0ttvv63/+7//07Zt2xQcHHzDfV566SXNnTtXKSkpLs9Y/+vaJcZcAQBgJSW5frsUrq5duyZfX1+tWrVKPXr00MmTJxUaGqpdu3bpwQcfvPWK/58PPvhAQ4cOLbbd4cOHFRER4Vjes2ePOnfurD59+uiTTz5x672vXr2qe+65R3369NG77757w3bfffedHnroIX311VeKiYkp8fsQrgAAsB7Tv7jZ29tb4eHhSkhIkCQlJCTIx8dHDRs2vIUyCxsyZIgMwyj2dX2wSkpKUkxMjNq1a6cPPvjA7feuVKmSGjVq5NZgeAAAgAIuD2hfsmSJnnjiCceUBB999JECAwNvW2GuSEtLU7du3RQcHKwVK1bIy8vL7WNlZWVp3759euyxx27abtmyZfLw8FCLFi3cfi8AAFB+uRyuHnjgAR09elTnz59XYGCg0wSipSE7O1sxMTFKT0/XvHnzdODAAcc2Hx8fp/Dj6emp2NhYLV68WJI0depUZWZmqn379qpZs6ZOnjypd955R7m5uRo1apRjv+joaHXp0kVNmzaVJK1evVqLFi3Siy++qDp16vw2HQUAAJZS4qkYCuaDKm1nzpzR3r17JUm9evVy2tagQQOdPHnSsWy322W32x3LDzzwgN566y19+umnunz5surWrauOHTsqPj7eaRqFiIgILV68WD/++KPy8/MVHh6ut99+WyNGjLi9nQMAAJbl1gztcB8D2gEAsB7TB7RHR0dry5YtJS5k8+bNio6OLvF+AAAAVuVSuGrYsKG6du2qRo0aaerUqdq6dasuX75cqN2lS5f0zTffaNKkSbr33nsVExOjsLAw04sGAAAoq1x+LHjixAnNmzdPS5cu1fnz52Wz2RQYGKiAgAAZhqGLFy/q4sWLMgxDgYGBevLJJ/Xiiy8qJCTkdvfBUngsCACA9Zg+iej18vLytHXrVu3YsUNHjhzR+fPnJf0y0D0iIkJt27ZVhw4dbmlahPKMcAUAgPWU5Ppd4k8Lenp6KjIyUpGRkSWvDAAAoJxz+YubAQAAUDzCFQAAgIkIVwAAACYiXAEAAJiIcAUAAGAiwhUAAICJ3ApXp06d0rZt25zW7d27V4MHD9bAgQP15ZdfmlEbAACA5ZR4nitJGjlypC5fvqyNGzdKks6cOaPIyEhdu3ZNVapU0YoVKxQfH6++ffuaWiwAAEBZ59adq927d6tr166O5b/97W/Kzs7W3r17lZqaqkceeURz5swxrUgAAACrcCtcXbhwQbVq1XIsr127Vp06dVLDhg1VoUIF9e3bV0eOHDGtSAAAAKtwK1zVrFlT//d//ydJysjI0M6dOxUdHe3YnpeXp7y8PHMqBAAAsBC3xlxFRUXpnXfeUdWqVfXNN98oPz9fvXv3dmw/dOiQ6tevb1aNAAAAluFWuHr99dd17NgxjR07Vt7e3pozZ45CQkIkSbm5ufrss880aNAgUwsFAACwArfCVe3atfWvf/1LmZmZ8vX1lbe3t2Nbfn6+Nm3axJ0rAABwR3IrXBWoVq1aoXW+vr66//77b+WwAAAAlnVL4erHH3/Uv//9b2VmZio/P7/Q9sGDB9/K4QEAACzHrXCVk5Oj2NhYrVy5Uvn5+bLZbDIMQ5Jks9kc7QhXAADgTuPWVAwTJ07U559/rhkzZuibb76RYRj65JNPlJiYqJiYGN1///3au3ev2bUCAACUeW6FqxUrVujpp5/W+PHj1bhxY0lS3bp1FRUVpbVr18rf319//etfTS0UAADACtwKV2fPntVDDz0k6ZcB7JJ05coVx/Z+/frp888/N6E8AAAAa3ErXNWuXVvnz5+XJFWqVEkBAQE6evSoY3tWVpZycnLMqRAAAMBC3BrQ3rp1a23btk3jx4+XJPXs2VOzZ89WUFCQ8vPzNXfuXLVp08bUQgEAAKzArTtXI0eOVGhoqHJzcyVJ06dPl7+/v/74xz8qNjZW1apV0zvvvGNqoQAAAFZgMwrmULhF+fn52r9/vzw8PBQRESFPz1uaQqvcCg0NlSQlJyeXciUAAMBVJbl+m5aAKlSowMzsAADgjudSuNqyZYskqWPHjk7LxSloDwAAcKdwKVx17txZNptN2dnZ8vb2dizfiGEYstlsstvtphUKAABgBS6Fq82bN0uSvL29nZYBAADgzKVw1alTp5suAwAA4Be3PKD97NmzOnnypCTp7rvvVq1atW71kAAAAJbl1jxXkrRp0ya1atVKQUFBatu2rdq2baugoCC1atVKGzduNLNGAAAAy3DrztUXX3yh/v37q3bt2ho3bpzCw8MlSUePHtWnn36qmJgYffbZZ+rTp4+pxQIAAJR1bk0i2rhxY3l5eWnr1q2qUqWK07asrCx16NBBdrtdBw8eNK3Q8oJJRAEAsJ6SXL/deiyYnJysp59+ulCwkqSqVavq2Wef1YkTJ9w5NAAAgKW5Fa4iIiJ09uzZG24/c+aM41EhAADAncStcDVr1iwtWLBAq1atKrTtiy++0MKFCzVnzpxbLg4AAMBqXBrQ3qtXr0Lratasqb59++quu+5SWFiYJCkpKUmnT59WeHi4/vKXvygqKsrcagEAAMo4l8LVvn37ivy6m+DgYElyzHPl6emp4OBg5eTkaP/+/eZVCQAAYBEuhauC8AQAAICbc3sSUQAAABRGuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwkUtTMdxIamqqtmzZorNnz6pfv36qV6+e7Ha7MjMzVa1aNXl4eJhVJwAAgCW4defKMAyNGTNGISEhevLJJzVmzBgdO3ZMknT58mXdfffd+stf/mJqoQAAAFbgVriaPXu25s2bp7Fjx2rDhg0yDMOxrVq1aurbt69WrlxpWpEAAABW4Va4ev/99zV48GDNnDlTzZs3L7S9WbNmjjtZAAAAdxK3wlVKSoratWt3w+1+fn7KyspyuygAAACrcitc1apVSykpKTfc/sMPPzi+1BkAAOBO4la46tu3rxYsWKDk5GTHOpvNJklKTEzUxx9/rP79+5tTIQAAgIW4Fa6mTZumoKAgNW/eXIMHD5bNZtMbb7yhDh06KCYmRs2aNdPEiRPNrtWJ3W7XrFmz1LFjR9WoUUOBgYGKjIzU1q1bS3ys3r17y2azac6cOYW2bd++XW3btpWvr68aNGigN954w2kAPwAAwPXcClfVqlXTzp07NW7cOKWmpqpixYr69ttvlZGRoSlTpmjr1q2qVKmS2bU6yc7OVlxcnFq2bKlPPvlES5cuVUBAgCIjI/X111+7fJyEhATt3LmzyG1JSUmKjo5WUFCQ1q5dq1GjRmny5Ml68803zeoGAAAoZ2xGCW/D5OTkaNGiRWrevLk6dux4u+oqlt1uV1ZWlgICApzWNWnSRGFhYVqzZk2xx8jNzVWTJk00ceJEPfPMM5o9e7bGjh3r2D5s2DCtX79ex44dk7e3tyRp4sSJeu+99/TTTz/Jx8enxHWHhoZKktMjVQAAULaV5Ppd4jtXFStW1Pjx43X06NGSV2YiDw8Pp2BVsK5Zs2Y6ffq0S8eYM2eOAgIC9NRTTxW5PSEhQb1793YEK0l6/PHHlZGRoR07drhdOwAAKL/c+vqbJk2a6OTJkyaXcuvy8vK0c+dOPfzww8W2PXXqlOLi4rRx40bHYPzrXblyRSkpKYqIiHBaHxERIZvNpiNHjqhz585FHrsg3RYlJSVF9evXL7a+krp45ZrmJJZu4AUAoCwIqOStsdH3ltr7uxWuZsyYoUGDBikyMlJRUVFm1+S2WbNmKTU1VaNHjy627ejRo9W3b1+1adOmyO0ZGRmSJH9/f6f13t7eqlSpki5cuHCr5ZrqyrU8Ldl1qrTLAACg1NUL8LVeuHr33XcVGBio6OhohYSEKCQkRL6+vk5tbDabVq1aVaLjZmZmKi0trdh2oaGhTo/qJGnDhg2aMmWKJk+erJYtW950/8TERCUmJt62R5s3ex57s7tat6JKRS+Njgq/LccGAMBKqvq6FW9M49a779u3TzabTcHBwbLb7UpKSirUpqhHbcWJj4/X0KFDi213+PBhp8d1e/bsUb9+/TRo0CBNnjy52P1HjhypkSNHqlKlSo47VNIvg/UzMjLk7+/vuGOVmZnptO+1a9d09epVBQYGutap30g1Xy+9GHVPaZcBAMAdr8SfFixrkpKS1L59e7Vo0UJr1qyRl5dXsfsUF/yys7NVsWJFBQcHq1+/fpo7d65j2/79+9WsWTNt3rz5hmOuboZPCwIAYD0luX6X7n2zW5SWlqZu3bopODhYK1ascClYSdLmzZsLrYuMjNTw4cM1cOBAxyPHmJgYrVq1SrNmzXIce/ny5fL397/pdysCAIA7l1vh6tQp1wZO387vF8zOzlZMTIzS09M1b948HThwwLHNx8dHLVq0cCx7enoqNjZWixcvlqQb3nFq2LCh07aXXnpJS5Ys0RNPPKEXXnhB+/fv1+zZszVjxoxCY74AAAAkN8PV3Xff7dKYKrvd7s7hXXLmzBnt3btXktSrVy+nbQ0aNHCaKsJut7tVS1hYmBITEzVmzBh1795dNWvW1LRp0/TnP//5lmoHAADll1vh6sMPPywUrux2u06ePKm//e1vqlWrlv70pz+ZUuCN3H333S5/x58r7W7Upl27djf8ehwAAIBfcytc3WhGc0kaP368WrduXehTdgAAAHcCt764+Wb8/Pz09NNPO33CDgAA4E5heriSpPz8fP3000+349AAAABlmqlTMWRlZWnLli2aPXu206f1AAAA7hRuhasKFSrc8NOChmEoODhY8+fPv6XCAAAArMitcDV58uRC4cpmsykgIEANGzZUt27d5Olp6flJAQAA3OJWApo6darJZQAAAJQPbg1o79KlizZt2nTD7Zs3b1aXLl3cLgoAAMCq3ApX33zzjc6cOXPD7WfPntW3337rdlEAAABW5fZUDDf7+pukpCRVqVLF3UMDAABYlstjrj755BN98sknjuXXXntN77//fqF2GRkZ2rdvn7p3725OhQAAABbicri6evWqzp0751i+dOmSKlRwvvFls9nk5+en4cOHa/LkyeZVCQAAYBE2w9VvP75OSEiI5s2bp169et2Omsq10NBQSVJycnIpVwIAAFxVkuu3W1MxnDhxwp3dAAAAyr1bnunz0qVLyszMVH5+fqFtwcHBt3p4AAAAS3E7XL333nt66623bnp7zG63u3t4AAAAS3JrKoYFCxboT3/6k8LCwvTaa6/JMAyNGjVKEyZMUJ06dXT//fdr8eLFZtcKAABQ5rkVrv7yl78oOjpaCQkJeu655yRJjz76qGbMmKFDhw7p0qVLOn/+vKmFAgAAWIFb4eq///2vevbsKUny8vKSJF27dk2SVK1aNQ0ZMkTz5883qUQAAADrcCtcVatWTXl5eZKkqlWrqlKlSkpJSXFsr1Klin766SdzKgQAALAQt8JVkyZNtHfvXsdymzZt9N577yk1NVUpKSlauHChwsPDTSsSAADAKtz6tOAf/vAHLViwQLm5ufLx8dG0adMUFRXlmHrBy8tLK1euNLVQAAAAK3BrhvaiJCcna82aNfLw8FC3bt24c3UDzNAOAID1lOT6XeJwlZOTo0WLFql58+bq2LGjexXewQhXAABYT0mu3yUec1WxYkWNHz9eR48eLXllAAAA5ZzbA9pPnjxpcikAAADW51a4mjFjhhYuXKiNGzeaXQ8AAIClufVpwXfffVeBgYGKjo5WSEiIQkJC5Ovr69TGZrNp1apVphQJAABgFW6Fq3379slmsyk4OFh2u11JSUmF2thstlsuDgAAwGrcCleMtwIAACiaW2OuAAAAUDS3w5XdbteyZcs0bNgw9enTR/v375ckZWZm6vPPP9eZM2dMKxIAAMAq3ApXGRkZat++vQYNGqR//OMfWr16tc6dOydJqly5skaOHKl58+aZWigAAIAVuBWuJkyYoIMHD2r9+vVKTk7W9ZO8e3h46LHHHtNXX31lWpEAAABW4Va4+vLLLzVixAh17dq1yE8FhoeHM+gdAADckdwKV5mZmQoJCbnh9p9//ll5eXluFwUAAGBVboWrhg0bas+ePTfcnpiYqPvuu8/togAAAKzKrXA1ZMgQffjhh1q+fLljvJXNZlNubq5efvllrVu3TsOGDTO1UAAAACtwaxLRF198UQcPHtQTTzwhf39/SdKgQYN0/vx55eXladiwYXr22WfNrBMAAMAS3ApXNptN77//vmJjYxUfH6+kpCTl5+erYcOGGjBggDp27Gh2nQAAAJbgVrgq0KFDB3Xo0MGsWgAAACzvlsLVhQsXtHHjRse0CyEhIerSpYuqV69uRm0AAACW43a4mjp1qt544w3l5uY6rff29ta4ceP06quv3nJxAAAAVuPWpwWnT5+uV199VVFRUUpISNB///tf/fe//9VXX32lqKgozZgxQ9OnTze7VgAAgDLPZlz/3TUuqlu3rlq1aqVVq1YVub1nz5764YcfdPr06VsusLwJDQ2VJCUnJ5dyJQAAwFUluX67PUP77373uxtu7969uy5duuTOoQEAACzNrXDVvn177dq164bbd+3apfbt27tdFAAAgFW5Fa4WLFigHTt2aPTo0Y45rvLz85WUlKRRo0Zp586dWrBggdm1AgAAlHlujbmqUqWK8vPzlZOTI0mqUOGXjJafny9J8vHxkaen8wcRbTabMjMzb7Vey2PMFQAA1lOS67dbUzH069dPNpvNnV0BAADKNbfC1ccff2xyGQAAAOWDW2OuAAAAULRb+vqbLVu2KDk5WRcvXtSvh27ZbDaNHj36looDAACwGrfC1X/+8x8NHDhQSUlJhUJVAcIVAAC4E7kVroYMGaKzZ89qwYIFat26tapVq2Z2XQAAAJbkVrg6ePCgXn31VQ0dOtTsegAAACzNrQHt99xzD1MxAAAAFMGtcDV16lT99a9/VWpqqtn1uMxut2vWrFnq2LGjatSoocDAQEVGRmrr1q0lPlbv3r1ls9k0Z84cp/VTp06VzWYr9GL2eQAAcCNuPRbs27evcnJydO+99+qRRx5RvXr15OHh4dTGZrNp3rx5phRZlOzsbMXFxempp57S+PHj5eHhoUWLFikyMlKJiYnq0qWLS8dJSEjQzp07b7jd19dXX3/9tdO6gllaAQAAfs2tcPXtt9/q+eef19WrV7VmzZoi29zucOXr66vk5GQFBAQ41nXt2lVNmjTR3LlzXQpXubm5GjlypOLi4vTMM88U2aZChQpq06aNaXUDAIDyza3HgiNGjFDVqlW1fv16ZWRkOL64+fqX3W43u1YnHh4eTsGqYF2zZs10+vRpl44xZ84cBQQE6KmnnroNFQIAgDuRW3eukpKS9Prrr6tr165m13NL8vLytHPnTj388MPFtj116pTi4uK0cePGmw7Oz87OVs2aNXXx4kWFh4dr9OjRxX5K8maPDVNSUlS/fv1i6wMAANbkVrhq3LixMjMzza7lls2aNUupqakuTV46evRo9e3b96aP/MLCwvTGG2+oRYsWysnJ0dKlS/Xcc88pMzNTY8eONbN0AABQTrgVrubMmaMnn3xS0dHReuihh0wrJjMzU2lpacW2Cw0Nlbe3t9O6DRs2aMqUKZo8ebJatmx50/0TExOVmJioo0eP3rTdH/7wB6flRx99VNeuXdNrr72mF198UV5eXkXul5ycfNPaAQBA+eVWuHrzzTdVpUoVtW3bVvfdd5+Cg4OL/LTgqlWrSnTc+Ph4lyYmPXz4sCIiIhzLe/bsUb9+/TRo0CBNnjy52P1HjhypkSNHqlKlSsrIyHCsz8nJUUZGhvz9/W+474ABA7RixQolJSWpUaNGxb4XAAC4s9iMG3054E3cfffdxU4iarPZbnoHxyxJSUlq3769WrRooTVr1tzwbtKva7uZ7OxsVaxYscht8fHxGjBggA4dOuRWuCq4c/Vb/NsAAABzlOT67dadq5MnT7qzm+nS0tLUrVs3BQcHa8WKFS4FK0navHlzoXWRkZEaPny4Bg4cWOiR4/WWLVsmf39/hYWFuV03AAAov9wKV2VBdna2YmJilJ6ernnz5unAgQOObT4+PmrRooVj2dPTU7GxsVq8eLEkqXPnzkUes2HDhk7bWrZsqdjYWEVERCg7O1tLlizR559/rrffftvlIAcAAO4sbocru92u+Ph4bd68WWfPntWrr76qpk2bKjMzU5s2bVL79u1Vu3ZtM2t1cubMGe3du1eS1KtXL6dtDRo0cLq7Zrfb3Zp3KywsTHPnztVPP/0km82mpk2b6u9//7uefPLJW6odAACUX26NucrIyNDvfvc77d69W5UrV9aVK1e0YcMGdenSRXa7XQ0aNNDgwYM1c+bM21GzpTHmCgAA6ynJ9dutGdonTJiggwcPav369UpOTtb1+czDw0OPPfaYvvrqK3cODQAAYGluhasvv/xSI0aMUNeuXYv85F14eHiZGfQOAADwW3IrXGVmZiokJOSG23/++Wfl5eW5XRQAAIBVuRWuGjZsqD179txwe2Jiou677z63iwIAALAql8PVli1bdO7cOUnSkCFD9OGHH2r58uWO8VY2m025ubl6+eWXtW7dOg0bNuz2VAwAAFCGufxpQQ8PD3366acaNGiQDMPQc889p8WLF8vf318ZGRmqXbu2zp8/r7y8PA0bNkzvvffe7a7dkvi0IAAA1nNbZmi/PoPZbDa9//77io2N1YoVK3T8+HHl5+erYcOGGjBggDp27OhG2QAAANZ3SzO0d+jQQR06dDCrFgAAAMsr0YD24r7wGAAA4E5XonD1hz/8QR4eHi69PD0t+7WFAAAAbitRAoqKilJ4ePjtqgUAAMDyShSuYmNjNWjQoNtVCwAAgOW5NYkoAAAAika4AgAAMBHhCgAAwEQuj7nKz8+/nXUAAACUC9y5AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADCRZcOV3W7XrFmz1LFjR9WoUUOBgYGKjIzU1q1bi9335MmTstlshV5t2rQp1Hb79u1q27atfH191aBBA73xxhsyDON2dAkAAJQDnqVdgLuys7MVFxenp556SuPHj5eHh4cWLVqkyMhIJSYmqkuXLsUeY+bMmYqMjHQsV6lSxWl7UlKSoqOj1bVrV7322mvat2+fJkyYIA8PD40dO9b0PgEAAOuzbLjy9fVVcnKyAgICHOu6du2qJk2aaO7cuS6Fq3vuuafIu1UFZs+ererVq2vZsmXy9vbWI488onPnzmnGjBkaMWKEfHx8TOkLAAAoPyz7WNDDw8MpWBWsa9asmU6fPm3KeyQkJKh3797y9vZ2rHv88ceVkZGhHTt2mPIeAACgfLFsuCpKXl6edu7cqUaNGrnU/vnnn5eHh4dq1aqloUOH6sKFC45tV65cUUpKiiIiIpz2iYiIkM1m05EjR2543NDQ0Bu+UlJS3OscAACwBMs+FizKrFmzlJqaqtGjR9+0nY+Pj55//nlFR0fL399fu3bt0owZM/T9999r9+7d8vLyUkZGhiTJ39/faV9vb29VqlTJKYgBAAAUKFPhKjMzU2lpacW2Cw0NdXpUJ0kbNmzQlClTNHnyZLVs2fKm+wcFBWn+/PmO5U6dOqlx48bq0aOHvvjiCw0YMMC9Dvw/ycnJN60dAACUX2UqXMXHx2vo0KHFtjt8+LDT47o9e/aoX79+GjRokCZPnuzWe3fv3l1+fn764YcfNGDAAMcdq8zMTKd2165d09WrVxUYGOjW+wAAgPKtTI25GjJkiAzDKPZ1fbBKSkpSTEyM2rVrpw8++MC0Wvz8/FS/fv1CY6uOHj1aqAYAAIACZSpclVRaWpq6deum4OBgrVixQl5eXm4fa+3atbpy5YoefPBBx7qYmBitWrVKP//8s2Pd8uXL5e/vr3bt2t1S7QAAoHwqU48FSyI7O1sxMTFKT0/XvHnzdODAAcc2Hx8ftWjRwrHs6emp2NhYLV68WJL05z//WRUqVFCbNm3k7++v3bt3Ky4uTq1atVLv3r0d+7300ktasmSJnnjiCb3wwgvav3+/Zs+erRkzZhQa8wUAACBZOFydOXNGe/fulST16tXLaVuDBg108uRJx7Ldbpfdbncs33fffZo/f74WLVqkq1evqm7dunr22Wc1bdo0eXr+//8kYWFhSkxM1JgxY9S9e3fVrFlT06ZN05///Ofb2zkAAGBZNoMvyvtNFXxa8GafKAQAAGVLSa7flh5zBQAAUNYQrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAAAATEa4AAABMRLgCAAAwEeEKAADARIQrAAAAExGuAAAATES4AgAAMBHhCgAAwEQ2wzCM0i7iTuLr66u8vDzVr1+/tEsBAAAuSklJkaenp7Kzs4tt6/kb1IPr+Pj43LZjp6SkSFK5DW7lvX9S+e8j/bO+8t7H8t4/qfz38Xb1z9PT0+VrOHeuypHQ0FBJUnJycilXcnuU9/5J5b+P9M/6ynsfy3v/pPLfx7LQP8ZcAQAAmIhwBQAAYCLCFQAAgIkIVwAAACYiXAEAAJiIcAUAAGAipmIAAAAwEXeuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuCoHjhw5oq5du8rPz0916tTRuHHjdO3atdIuq1jx8fH6/e9/r3r16snPz0/NmzfXhx9+qOs/wNq5c2fZbLZCryNHjjgdKzMzU88++6wCAwNVpUoVPfbYY0pLS/utu+Tk448/LrL2CRMmOLVbvHixwsPDVbFiRd1///1au3ZtoWOVxf5JNz4/NptNy5Ytu2mbsngOk5KSNHz4cDVv3lyenp5q0qRJke3MPGfbt29X27Zt5evrqwYNGuiNN97Q7foQd3H9y8rK0tSpU/XQQw/J399ftWvXVs+ePbV//36ndidPnizynLZp06ZU++dKHyXzfybL0jm80bmx2WyqWLFise1K+xy6cl2QLPA7aMDSLly4YAQFBRkdO3Y01q1bZyxevNioVq2a8ac//am0SytWmzZtjMcff9xYtmyZsWnTJmPChAlGhQoVjKlTpzradOrUyWjfvr2xY8cOp1d2drbTsaKjo4169eoZy5cvN1atWmU0adLEuP/++42ff/75t+6Ww0cffWRIMtatW+dU+6lTpxxt/vGPfxg2m82YNGmS8fXXXxvDhg0zPD09jR07djgdqyz2zzAM4+DBg4XOzcCBAw1PT0/j3LlzhmFY6xx++eWXRr169Yx+/foZTZs2NRo3blyojZnn7Pjx40blypWNPn36GBs3bjTeeustw9vb25g9e3ap9G///v1GnTp1jJdfftlYv369sWrVKuPhhx82KlWqZBw6dMjR7sSJE4YkY+bMmU7n9MCBA07H+63750ofDcPcn8mydg5zcnIK9Wv79u1G1apVjd69ezvaldVz6Mp1wQq/g4Qri5s5c6bh5+dnnD9/3rFu4cKFhoeHh5GamlqKlRWv4OJ7vaFDhxpVq1Y17Ha7YRi//BF89NFHb3qc7du3G5KM9evXO9YdOXLEsNlsxvLly80tugQKwlVR/SwQHh5uPPHEE07r2rZta8TExDiWy2r/biQkJMTo3r27Y9lK57Dg584wDCM2NrbIC7OZ5+y5554zGjRoYOTm5jrW/e///q/h7+9v5OTkmNKn6xXXv8uXLxtXrlxxWnfp0iUjMDDQ+J//+R/HuoILc3x8/E3f77fun2G4dg7N/Jksa+ewKJs3bzYkGZ999pljXVk9h65cF6zwO8hjQYtLSEhQVFSUAgMDHesGDBig/Px8JSYmlmJlxatRo0ahdS1atFBWVpauXLni8nESEhLk7++vrl27Otbde++9at68ub766itTar0dkpOTdezYMQ0YMMBp/eOPP65NmzYpNzdXkrX6t337dp04cUJPPvlkifYrK32sUOHmfxLNPmcJCQnq3bu3vL29nY6VkZGhHTt2mNElJ8X1z8/PT5UqVXJaV7lyZYWFhen06dMlfr/fun9S8X10lVXPYVGWLl2qqlWrqmfPniXe97fuX3HXBav8DhKuLO7IkSOKiIhwWufv76+goKBC4wesYNu2bapbt66qVKniWPftt9/Kz89PFStWVKdOnbRlyxanfY4cOaJ7771XNpvNaX2jRo3KxL9B48aN5eHhodDQUMXFxclut0uSo7Zfn79GjRrp2rVrOnHihKNdWe7f9ZYuXSo/Pz/9/ve/d1pv9XNYwMxzduXKFaWkpBQ6VkRERJHjf0pLRkaGDhw4oEaNGhXa9vzzz8vDw0O1atXS0KFDdeHCBce2st4/M34my3ofJennn3/WypUr1adPH6cxVwWscA6vvy5Y5XfQ0+09USZcvHhR/v7+hdYHBAQ4/ZJYwbZt27Rs2TK9+eabjnWdOnXS4MGDdc899+j06dOaM2eOoqKi9O2336pt27aSyu6/QVBQkKZNm6bWrVvLZrNp9erVmjRpklJTU/Xuu+/q4sWLklSo9oCAAEly1F5W+/dreXl5+uyzz9SrVy/5+fk51lv5HP6amecsIyOjyGN5e3urUqVKZabf48aNk81m0/Dhwx3rfHx89Pzzzys6Olr+/v7atWuXZsyYoe+//167d++Wl5dXme6fWT+TZbmPBRISEnThwgUNGjTIab1VzuGvrwtW+R0kXKFM+PHHHzVw4EBFRkZq5MiRjvXTpk1zatejRw81btxY06dPL3OPxH4tOjpa0dHRjuVu3brJ19dXc+fO1csvv1yKld0eGzZs0Llz5wr9EbfyObzTffTRR3r//ff18ccfq169eo71QUFBmj9/vmO5U6dOaty4sXr06KEvvvii0CObsuZO+plcsmSJateurUceecRpvRXO4Y2uC1bAY0GLCwgIUGZmZqH1Fy9edBqHVZZlZGQoJiZG1atX18qVK286psDPz0+PPvqofvjhB8c6K/0bDBgwQHa7Xf/5z38c/6f169oL/s+soHar9G/p0qWqXr26U6AsipXPoZnnrOD/ln/d7tq1a7p69Wqp9zshIUHPPfecXnnlFcXGxhbbvnv37vLz83Oc17Lev+u5+zNZ1vt4+fJlrVmzRgMHDpSHh0ex7cvSObzRdcEqv4OEK4uLiIgocm6WtLS0Qs+Ry6Ls7Gz16NFDmZmZSkhIULVq1Up8jIiICB09erTQvCRFjUcrSwpq+/X5O3LkiLy9vRUaGupoV9b7l52drS+//FL9+/eXl5dXife3Qh8lc8+Zn5+f6tevX+hYBfuVZr937typxx57TLGxsXr11VfdOkZZ7p8rrH4OJemLL75QdnZ2obvJriqt/t3sumCV30HClcXFxMRo48aNjmfH0i+TsFWoUEHdunUrvcJckJeXpwEDBujw4cNat26d6tatW+w+V65c0dq1a/Xggw861sXExOjixYvatGmTY92xY8f073//W927d78ttbtr2bJl8vDwUIsWLRQaGqrw8HDFx8c7tVm+fLkeeeQRx6dXrNC/1atX6/Llyy79EbfyOTT7nMXExGjVqlX6+eefnY7l7++vdu3a3ebeFO3QoUN69NFH1aVLFy1YsMDl/dauXasrV64UOq9lrX9FuZWfybLcx6VLl6phw4Zq3bq1S+3Lwjks7rpgmd9BtydxQJlQMIlop06djPXr1xsffvih4e/vb4lJRIcOHWpIMt58881Ck97l5OQYW7ZsMXr27Gl8+OGHxtdff238/e9/N1q0aGF4e3sbu3btcjpWdHS0Ub9+feOzzz4zVq9ebTRt2rTUJ9ns1q2b8frrrxv//Oc/jX/+85/GsGHDDJvNZowaNcrRZunSpYbNZjMmT55sbN682Rg+fLjh6elpbN++3elYZbF/1+vVq5cRHBxs5OfnO6232jm8cuWKER8fb8THxxudO3c26tev71g+e/asYRjmnrPjx48bfn5+Rr9+/YxNmzYZb7/99m2doLG4/p05c8aoV6+eUbduXWPTpk1Ov5MHDx50HGfMmDHG2LFjjRUrVhgbN240Zs6caVSpUsVo1apVqfbPlT6a/TNZ1s5hgbNnzxqenp7GpEmTijxOWT2HxV0XDMMav4OEq3Lg0KFDxiOPPGL4+voatWrVMsaOHes0IVpZ1aBBA0NSka8TJ04Yx48fN6Kjo406deoYXl5ehr+/v9G9e/dCfwANwzAyMjKMZ555xvD39zcqV65s9O3bt9QnUR05cqRxzz33GL6+voaPj4/RtGlTY968eYUCyAcffGCEhYUZ3t7eRtOmTY01a9YUOlZZ7F+BCxcuGN7e3sa4ceMKbbPaOSyYWLGo1+bNmx3tzDxn//rXv4zWrVsbPj4+Rr169Yy4uLhCPyO/Vf8KJpss6tWpUyen/j/wwANG1apVDU9PT6NBgwbGqFGjjMzMzFLtnyt9vB0/k2XpHBZ49913DUlOM+tfr6yew+KuC9fXX5Z/B22GcRu/5AkAAOAOw5grAAAAExGuAAAATES4AgAAMBHhCgAAwESEKwAAABMRrgAAAExEuAIAADAR4QoAAMBEhCsAuE5MTIwCAgJ05syZQtsyMzMVFBSk1q1bKz8/vxSqA2AFhCsAuM78+fN17do1jR49utC2iRMnKj09XYsWLVKFCvz5BFA0/joAwHVCQkI0ZcoU/eMf/1BiYqJj/XfffacFCxZozJgxuv/++29rDTk5OdwZAyyMcAUAvzJmzBg1a9ZML7zwgnJycmS32zV8+HA1aNBAU6ZM0ZEjR/TYY48pMDBQFStWVKtWrbR69WqnY1y4cEFjx45V06ZNVblyZVWtWlUxMTHau3evU7tvvvlGNptNy5Yt06RJk1S3bl1VqlRJWVlZv2WXAZjIs7QLAICyxtPTU4sWLVK7du00ffp01apVS3v27NG6det04sQJtW/fXnXr1tWECRPk5+enzz77TL1799bKlSvVp08fSVJycrK+/PJL9e/fXyEhITpz5owWLlyoTp066dChQ7rrrruc3nP69Ony9vbW2LFjlZubK29v79LoOgAT2AzDMEq7CAAoi0aMGKGFCxfKx8dHPXv21NKlSxUVFaWzZ8/qu+++k4+PjyTJMAx16NBB586d07FjxyRJubm58vLychqbdfLkSUVEROjll1/WK6+8IumXO1eRkZEKDQ3VgQMH5Ovr+9t3FICpeCwIADcwY8YMVa9eXRUqVNDcuXN14cIFff311xowYIAuXbqk9PR0paen6/z584qOjtbx48eVmpoqSfLx8XEEK7vdrvPnz6ty5cq69957tWfPnkLvFRsbS7ACygkeCwLADVStWlX33nuv0tPTVbt2be3evVuGYeiVV15x3Hn6tbNnz6pu3brKz8/XvHnzNH/+fJ04cUJ2u93Rpnr16oX2CwkJuW39APDbIlwBgIsKPsE3duxYRUdHF9kmLCxMkjRz5ky98soreuaZZzR9+nQFBgaqQoUKGjVqVJGfBOSuFVB+EK4AwEWhoaGSJC8vL0VFRd207YoVKxQZGanFixc7rc/IyFCNGjVuW40ASh9jrgDARbVq1VLnzp21cOFCpaWlFdp+7tw5x397eHjo158Xio+Pd4zJAlB+cecKAErgr3/9qzp06KCmTZtq6NChCg0N1ZkzZ7Rjxw79+OOPjnmsevTooVdffVVPP/202rVrp/3792vJkiWOu18Ayi/CFQCUwH333afvv/9e06ZN08cff6zz58+rVq1aatGihSZPnuxoN3HiRF25ckVLly7V8uXL9cADD+if//ynJkyYUIrVA/gtMM8VAACAiRhzBQAAYCLCFQAAgIkIVwAAACYiXAEAAJiIcAUAAGAiwhUAAICJCFcAAAAmIlwBAACYiHAFAABgIsIVAACAiQhXAAAAJiJcAQAAmIhwBQAAYKL/D/xamnlbqgIyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# this takes very long!!!\n", "if run_spinup:\n", " for prcp_fac_mult in [0.5,2]:\n", " #oggm.cfg.PARAMS['temp_default_gradient'] = temp_grad\n", " #if run_spinup: \n", " pert = f'_{temp_grad}'\n", "\n", " dict_delta_t_rgi_eq = {}\n", " file_id = f'_spinup{pert}'\n", " # it does not need to be in perfect equilibrium to select the delta_t, but can still take up to 2000 years for the very slow glacier\n", " years = np.arange(2000) \n", " \n", " for gdir, _r in zip(gdirs, rgi_ids):\n", " dict_delta_t = {}\n", " print(gdir.rgi_id)\n", " for delta_t in np.arange(-2.4,0.3,0.05): # this might need to be adapted for other glaciers \n", " # We are using the task run_with_hydro to store hydrological outputs along with the usual glaciological outputs\n", " try:\n", " temp_bias_ts = pd.Series(years * 0. + delta_t, index=years)\n", " tasks.run_with_hydro(gdir, # Run on the selected glacier\n", " temp_bias_ts=temp_bias_ts, # applied temp.bias on top of the applied climate\n", " run_task=run_constant_climate_with_bias, # which climate scenario? \n", " y0=2009, halfsize=10, # Period which we will average and constantly repeat\n", " store_monthly_hydro=True, # Monthly outputs provide additional information\n", " output_filesuffix=file_id); # an identifier for the output file, to read it later\n", " with xr.open_dataset(gdir.get_filepath('model_diagnostics', filesuffix=file_id)) as ds:\n", " # The last step of hydrological output is NaN (we can't compute it for this year)\n", " # at year 0, the volume is near to the inventory date\n", " ds = ds.isel(time=slice(0, -1)).load()\n", " ratio = np.abs(1 - ds.volume_m3.isel(time=-1)/ds.volume_m3.isel(time=0)).values\n", " if ds.isel(time=-1).volume_m3<0.7*ds.volume_m3.isel(time=0):\n", " # we can stop, we don't need to look for even warmer temperatures... \n", " print(gdir.rgi_id, delta_t)\n", " break \n", " print(delta_t)\n", " except:\n", " ratio = 100000\n", " dict_delta_t[delta_t.round(2)] = ratio\n", " pd_delta_t = pd.DataFrame(dict_delta_t, index = ['rel_diff_v1/v0']).T\n", " print(pd_delta_t.min())\n", " delta_t_eq = pd_delta_t.idxmin().values[0]\n", " dict_delta_t_rgi_eq[f'{gdir.rgi_id}{pert}'] = delta_t_eq\n", " \n", " \n", " ### spinup \n", " for gdir in gdirs:\n", " print(gdir.rgi_id)\n", " delta_t_eq = dict_delta_t_rgi_eq[f'{gdir.rgi_id}{pert}']\n", " print(f'{gdir.rgi_id} - {gdir.name} need temperature bias of {delta_t_eq}°C to get into steady state with similar'\n", " 'volume as volume from inventory date')\n", " #with plt.xkcd():\n", " delta_t = delta_t_eq\n", " years = np.arange(2000) # 1000 use longer time series to make sure it is in steady-state ... \n", " temp_bias_ts = pd.Series(years * 0. + delta_t, index=years)\n", " temp_bias_ts.plot(); plt.xlabel('Year'); plt.ylabel('Temperature bias (°C)');\n", " \n", " # file identifier where the model output is saved\n", " file_id = f'_spinup{pert}'\n", " \n", " # We are using the task run_with_hydro to store hydrological outputs along with the usual glaciological outputs\n", " tasks.run_with_hydro(gdir, # Run on the selected glacier\n", " temp_bias_ts=temp_bias_ts, # the temperature bias to apply to the average climate\n", " run_task=run_constant_climate_with_bias, # which climate scenario? See following notebook for other examples\n", " y0=2009, halfsize=10, # Period which we will average and constantly repeat\n", " store_monthly_hydro=True, # Monthly ouptuts provide additional information\n", " output_filesuffix=file_id); # an identifier for the output file, to read it later\n", " # save temperature bias for steady states of the glaciers in JSON string\n", " with open('data_idealised_exps_preprocessing/idealised_equilibrium_temp_bias_pert.json', 'w') as outfile:\n", " json_string = json.dumps(dict_delta_t_rgi_eq)\n", " outfile.write(json_string)\n", " else:\n", " # necessary temperature bias for steady states of the glaciers\n", " with open('data_idealised_exps_preprocessing/idealised_equilibrium_temp_bias_pert.json') as json_file:\n", " dict_delta_t_rgi_eq = json.load(json_file)\n", " print(dict_delta_t_rgi_eq)" ] }, { "cell_type": "code", "execution_count": null, "id": "2eda0b15-06ee-4fd7-8505-15c9e3e3b765", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:oggm_gmip3_working]", "language": "python", "name": "conda-env-oggm_gmip3_working-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 5 }