{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## GlaThiDa to RGI, step 3: check results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We assume the HDF file is ready." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import geopandas as gpd\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "file = 'glathida-v3.1.0/data/TTT_per_rgi_id.h5'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['RGI60-01.00570' 'RGI60-01.08989' 'RGI60-01.10006' ... 'RGI60-19.02146'\n", " 'RGI60-19.02147' 'RGI60-19.02150']\n" ] } ], "source": [ "with pd.HDFStore(file) as store:\n", " rgi_ids = list(store.keys())\n", "rgi_ids = np.array([s[1:] for s in rgi_ids])\n", "print(rgi_ids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame(index=rgi_ids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.to_csv('rgi_ids_with_ttt.csv')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "df = pd.read_hdf(file, key='RGI60-01.08989')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GlaThiDa_IDPOLITICAL_UNITGLACIER_NAMESURVEY_DATEPROFILE_IDPOINT_IDPOINT_LATPOINT_LONELEVATIONTHICKNESSTHICKNESS_UNCERTAINTYDATA_FLAGREMARKSRGI_REGRGI_ID
37598186577USEKLUTNA GLACIER201203161630061.196465-148.9729311471.016135.0NaNNaN1RGI60-01.08989
37598196577USEKLUTNA GLACIER201203161630161.196686-148.9728851470.016035.0NaNNaN1RGI60-01.08989
37598206577USEKLUTNA GLACIER201203161630261.196907-148.9728551470.015935.0NaNNaN1RGI60-01.08989
37598216577USEKLUTNA GLACIER201203161630361.197132-148.9728241470.015835.0NaNNaN1RGI60-01.08989
37598226577USEKLUTNA GLACIER201203161630461.197353-148.9727781470.015835.0NaNNaN1RGI60-01.08989
................................................
37604026577USEKLUTNA GLACIER2012031616204861.231388-149.0055541244.019235.0NaNMedium confidence1RGI60-01.08989
37604036577USEKLUTNA GLACIER2012031616204961.231598-149.0053861242.019035.0NaNMedium confidence1RGI60-01.08989
37604046577USEKLUTNA GLACIER2012031616205061.231804-149.0052031240.018835.0NaNNaN1RGI60-01.08989
37604056577USEKLUTNA GLACIER2012031616205161.232010-149.0050201239.018635.0NaNNaN1RGI60-01.08989
37604066577USEKLUTNA GLACIER2012031616205261.232216-149.0048371236.018435.0NaNNaN1RGI60-01.08989
\n", "

589 rows × 15 columns

\n", "
" ], "text/plain": [ " GlaThiDa_ID POLITICAL_UNIT GLACIER_NAME SURVEY_DATE PROFILE_ID \\\n", "3759818 6577 US EKLUTNA GLACIER 20120316 16 \n", "3759819 6577 US EKLUTNA GLACIER 20120316 16 \n", "3759820 6577 US EKLUTNA GLACIER 20120316 16 \n", "3759821 6577 US EKLUTNA GLACIER 20120316 16 \n", "3759822 6577 US EKLUTNA GLACIER 20120316 16 \n", "... ... ... ... ... ... \n", "3760402 6577 US EKLUTNA GLACIER 20120316 16 \n", "3760403 6577 US EKLUTNA GLACIER 20120316 16 \n", "3760404 6577 US EKLUTNA GLACIER 20120316 16 \n", "3760405 6577 US EKLUTNA GLACIER 20120316 16 \n", "3760406 6577 US EKLUTNA GLACIER 20120316 16 \n", "\n", " POINT_ID POINT_LAT POINT_LON ELEVATION THICKNESS \\\n", "3759818 300 61.196465 -148.972931 1471.0 161 \n", "3759819 301 61.196686 -148.972885 1470.0 160 \n", "3759820 302 61.196907 -148.972855 1470.0 159 \n", "3759821 303 61.197132 -148.972824 1470.0 158 \n", "3759822 304 61.197353 -148.972778 1470.0 158 \n", "... ... ... ... ... ... \n", "3760402 2048 61.231388 -149.005554 1244.0 192 \n", "3760403 2049 61.231598 -149.005386 1242.0 190 \n", "3760404 2050 61.231804 -149.005203 1240.0 188 \n", "3760405 2051 61.232010 -149.005020 1239.0 186 \n", "3760406 2052 61.232216 -149.004837 1236.0 184 \n", "\n", " THICKNESS_UNCERTAINTY DATA_FLAG REMARKS RGI_REG \\\n", "3759818 35.0 NaN NaN 1 \n", "3759819 35.0 NaN NaN 1 \n", "3759820 35.0 NaN NaN 1 \n", "3759821 35.0 NaN NaN 1 \n", "3759822 35.0 NaN NaN 1 \n", "... ... ... ... ... \n", "3760402 35.0 NaN Medium confidence 1 \n", "3760403 35.0 NaN Medium confidence 1 \n", "3760404 35.0 NaN NaN 1 \n", "3760405 35.0 NaN NaN 1 \n", "3760406 35.0 NaN NaN 1 \n", "\n", " RGI_ID \n", "3759818 RGI60-01.08989 \n", "3759819 RGI60-01.08989 \n", "3759820 RGI60-01.08989 \n", "3759821 RGI60-01.08989 \n", "3759822 RGI60-01.08989 \n", "... ... \n", "3760402 RGI60-01.08989 \n", "3760403 RGI60-01.08989 \n", "3760404 RGI60-01.08989 \n", "3760405 RGI60-01.08989 \n", "3760406 RGI60-01.08989 \n", "\n", "[589 rows x 15 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAD0CAYAAAC1rXA0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBO0lEQVR4nO2deZhcdZX3P6equqq7k3R39h2SkAUCsk3CIr5MFAd5GQcEQXFmcB1AByM486qgKCpPFBFRZmQdEJmBkWE1LIrjOqjDFkIEkhCyGdJJZ093utNLbef94y65XV3dqe6utet8nqeerrq37q1TS9/v73fO+Z0jqophGIZhDJZQqQ0wDMMwKhMTEMMwDGNImIAYhmEYQ8IExDAMwxgSJiCGYRjGkIiU2oBiMWHCBJ01a1apzTAMowJ45ZVX9qjqxKEeLyKDSW/9haqeM9TXKiVVIyCzZs1ixYoVpTbDMIwKQES2FPHlJhTxtfJK1QiIYRhGMRGRnJ5XyWvxTEAMwzAKQCiUW4g5lUoV2JLCYQJiGIaRZ0TEBMQwDMMYGrm6sCoZExDDMIwCYAJiGAVAVdm3bx/xeJzRo0czZsyYUptkGHnHBMQw8oyqsnr1arq7uwHnn2zGjBlMnjy5xJYZRn4xATGMPLN161a6urr8fy5VZevWrUyaNKkq/uGM6kBECIfDpTaj4JiAGEVDVdm5c2fWfel0uir+4YzqoRoGRCYgRtFobm5GVXv9Y6kqoVDIxMMYcZiAGEYe2bZtW9Z/qqlTp5bAGsMoHCJiAmIY+WL37t2k0+k+i6tU1QTEGJGYgBhGnnjzzTf9UZnnxlJVJk+eXBX/aEb1UQ1uWRMQo+B0dHTQ3d1NLBbzxUJESKfTHHnkkSW2zjDyT7W4sAreUEpEmkTkURF5U0TWisjpInKxiKwWkbSILOrnuJki8lv3mNUiclVg3w0i8pqIrBKR/xaRaYV+H8bQWbFiBel0mmQySSqVIpVKkUgkqKurq4pRmlGdeCJyuFslU4yOhLcCz6rq0cAJwFrgDeBC4LkBjksC/6yqxwCnAVeKyEJ333dV9XhVPRF4GvhaoYw3hoeXuptMJkkkEsTjceLxOD09PSxcuPDwJzCMCsUEZJiISANwJnAvgKrGVbVVVdeq6rqBjlXVFlVd6d5vxxGe6e7jA4GnjgIqt6D+CGfz5s2+aAQFJB6PU1dXV2rzDKNg5FtARCQsIq+KyNPu43Ei8ksRWe/+HRt47rUiskFE1onI+wrw9oDCz0DmALuB+9w3fo+IjBrsSURkFnAS8GJg2zIR2Qr8Hf3MQETkchFZISIrdu/ePaQ3YAyPF154gUQiQVdXl39rb29n/vz5pTbNMApKAWYgV+EMpD2uAX6tqvOAX7uPcT01lwDHAucAt4tIQXzFhRaQCHAycIeqngQcxH2TuSIio4HHgKuDMw9V/YqqzgQeBD6b7VhVvVtVF6nqookTh9ze2BgiqVSKjo4O0uk03d3dHDx4kPb2djo6Opg7d26pzTOMguGVMsnlluP5ZgB/DdwT2Hw+cL97/37gA4HtD6lqj6puBjYAp+TjfWVSaAFpBppV1Zs5PIojKDkhIjU44vGgqj7ez9P+E/jgsKw0CsLq1atRVdLptB9ETyaTNDY25txsxzAqlUHMQCZ4nhL3dnmW0/0A+CKQDmybrKot4Lj8gUnu9unA1sDzmt1teaegabyqukNEtorIAjfmcRawJpdjxflk7wXWquotGfvmqep69+F5wJv5tNvID6+++qrf7zmddn73qsqpp55aSrMMoygMwj21R1WzZqO653k/sEtVXxGRJbm8dJZtBYkTF2MdyFLgQRGJApuAT4jIBcC/AhOBZ0Rklaq+z03HvUdVzwXOAC4FXheRVe65vqyqPwNuFJEFOGq8Bfh0Ed6HMQi8uAfgi4j3d+bMmSWzyzCKQZ4zrM4AzhORc4FaoEFEHgB2ishUVW0RkanALvf5zUDwn2wGsD1fxgQpuICo6iogU12fcG+Zz90OnOve/wPZlRRVNZdVmbNq1Sp/tTkcEg8rW2JUC/kSEFW9FrjWPecS4P+p6t+LyHeBjwE3un+Xu4c8CfyniNwCTAPmAS/lxZgMbCW6URBef/11gF4iAnDaaaeVyiTDKCpFWCR7I/CwiHwKeBu4GEBVV4vIwzjhgiRwpaqmCmGACYiRd7q6ukgkEv7j4EjMOg8a1UChFgmq6u+A37n39+LElbM9bxmwLO8GZGACYuSdl19+Oev2I444osiWGEbpqPRV5rlgAmLknbfeeotUKtVnCv/Od76zRBYZRvExATGMQXLw4EGSySTgLCT0/olEhMbGxlKaZhhFpRrWOpmAGHnFc1+FQqFewfM5c+aUyiTDKDojoVBiLpiAGHll8+bN/v3gP9Dpp59eCnMMo2RUQ6sCExAjb7S1tflta4Ozj2g0ypgxY0pomWEUH5uBGMYg+NOf/uSPulTVb1179NFHl9gywyguImIxEMMYDHv37iUSOfSTUlVCoRAnn5xz/UzDGDHYDMQwcmT37t2Ew2Fqamp6bR81ahSxWKxEVpUPyWSSjRs30t7ezqhRo5g7d26fz6oYeK7Fari4lZpq+IxNQIy88OabbxKJRIjFYn4MJBwO8453vKPUppUcVWXVqlW0t7cD0N7ezr59+zj99NOL5uZQVbZs2cLOnTtRVZqampg/f35VuFlKQbW4sEb+OzQKTjqd5uDBg4TDYWKxGHV1ddTX11NfX8/s2bNLbV7J6e7u9sXDo6enh+bm5qLZsGPHDnbs2EEymSSVSrF3717eeOONor1+NZLPhlLligmIMWw2bNjgu0ZCoRA1NTXU1NQwatSoiv8HKSR//vOfi/Zara2tpFIpv8FXKpWitbWVXbt2Hf5gY0gUoKVt2WEuLGPYvPXWW31SdwHre+5SW1sL4GeleZ9TIpEgmUz2SjwoFOFwuFd3SC9Lbs2aNYwbN64oNlQT5sIyjBw4cOAAiUTCvzB5t1QqZZV3XUSEhoYGoG9zrU2bNhXFBq+Jl6qSSqVIJBL09PTQ1dXFiy++eJijjaFQDTMQExBjWDz//PN+v/NUKuWLx4QJEyr+nyOfzJs3zx/1B0Vk27ZtRXn9uro6Jk2a5H8/8XiceDxOd3c3u3fvLpqQVRMmIIYxAOl0ml27dpFKpUilUiSTSRKJBIlEghNOOKHU5pUVDQ0NvQTEExHvcysGc+fOJRwOk0wme90SiQQrV670WxAbw0dELIhuGAPx6quv+hfAoHjAIb+/cYhx48b12aaqRQumh0IhFi1a1CsW4rmz4vE4zz77bFHsqBZCoVBOt0qmsq03SsrKlSv7zDx6eno46aSTSm1aWTJ37tys24uZzltfX8+cOXN88fC+u+7ublpbW1m5cmXRbBnpmAvLMPph79699PT09BrB9vT00NPTw6xZs0ptXlnSXyA9Ho8XzY0FcMwxx1BXV+fHrrxssEQiwYoVK2htbS2aLSOVXMXDBMSoSn71q1+RTqf9mUcymSQejzNjxoyK/6coJMFYCBwSkS1bthTVjve+971+RlbQlZVIJHj00Uf7pGQbg8dcWIaRhWQyyfbt23u5QbysnjPPPLPU5pU1CxYsAOglIgBvv/12Ue2IxWKcfPLJvoh4iwxVle7ubn7+858X1Z6RiM1ADCML3roB7+LjBdFjsRj19fUltq686a+tr5cGXUyOOeYYGhsbs842Nm3aVNSV8iONfGZhiUitiLwkIn8SkdUi8g13+9dFZJuIrHJv5waOuVZENojIOhF5X6HepwmIMWgyF555I9clS5aUxqAKo6mpyb8fHIVu3bq16LZ84AMf6HffM888U9TYzEgjjzOQHuA9qnoCcCJwjoic5u77vqqe6N5+5r7uQuAS4FjgHOB2ESlIvrAJiDEoNm7c6KfqBhERK12SIwsWLMh68ShmNpZHTU0N55xzTq9tQdseeuihots0UshXDEQdOtyHNe5toCDV+cBDqtqjqpuBDcApw30/2TABMQbFE0880cdnrqocffTRFe/PLRaNjY19PqtQKOSXhCk2c+bM4cgjjwQOiYd3cWtvb7fU3iEwyCysCSKyInC7PMv5wiKyCtgF/FJVPTfAZ0XkNRH5kYiMdbdNB4LT2WZ3W94xATFy5sCBA35V13g87mftdHd3c9ZZZ5XavIqiqamJcDhMKBTy/wK0tLSUxJ73v//9fkHFTBF5+eWX+5SjNw7PIGYge1R1UeB2d+a5VDWlqicCM4BTROQ44A7gKBy3VgvwPffp2UZyBUmrMwExcubhhx9GVXul7cbjccaPH1+S7nqVzJw5c/yLtDcbERG2b99eEntEhA996EP+/aBNAI888oil9g6SQmRhqWor8DvgHFXd6QpLGvg3DrmpmoGZgcNmAAX5YZmAGDmRSqXYtGmTn3kVLMZ3wQUXlNq8imPs2LFEIpFeo/1wOEw8Hi96NpbHuHHjWLRokf84KCLJZJLf/OY3JbGrEslzFtZEEWly79cB7wXeFJGpgaddAHgdwp4ELhGRmIjMBuYBL+Xz/XkUXEBEpElEHhWRN0VkrYicLiIXu+loaRFZ1M9xM0Xkt+4xq0XkqsC+77rne01EnvA+XKNwPPvss71iHt4aEK/KqzE4RITGxkYikQiRSMR3Y4VCoZI2eTr11FMZPXp01n0bN25kz549RbaocsnjDGQq8FsReQ14GScG8jRwk4i87m5/N/B5AFVdDTwMrAGeBa5U1YKMSooxA7kVeFZVjwZOANbiKOWFwHMDHJcE/llVjwFOA65009MAfgkcp6rHA28B1xbKeMNJ033uued6rZ72bgOlgRoDM2vWrF7C4c1CSt0l8KKLLup1YfPsCofDPPXUUyUJ9Fci+RIQVX1NVU9S1eNV9ThV/aa7/VJVfYe7/TxVbQkcs0xVj1LVBapasFWhBRUQEWkAzgTuBVDVuKq2qupaVV030LGq2qKqK9377TjCM919/N+q6iWov4Dj4zMKxGuvveaXvAiKh4hw3HHHldq8iqWhocGffXg3EfE/61JRW1vrr+nxXDE1NTVEo1EikQi///3vS2ZbpTDILKyKpdAzkDnAbuA+EXlVRO4RkVGDPYmIzAJOArK1TvskkFVhReRyLzVu9+7dg31Zw2X58uUAvcqAp9NpzjjjjBJbVvk0NDT44uHNQkSk5LOQ+fPn+03BPPu8Xvfbt2+3rKwcMAEZPhHgZOAOVT0JOAhcM5gTiMho4DHgalU9kLHvKziurgezHauqd3upcRMnThyK/VVPS0uL32goU0De976CVUioGqZNm9YnrbMcBATgvPPO84XNi9VEo1FisRi//e1vS21e2WPFFIdPM9AcWPTyKI6g5ISI1OCIx4Oq+njGvo8B7wf+Ti2/sGA88MADAEQiEf/iJiIsXLjQXzdgDJ3Ro0f3iYOIiF9qvZREIhGWLFnSKwbi3U+n01Yr6zDYDGSYqOoOYKuILHA3nYWTGXBYxPlk7wXWquotGfvOAb4EnKeqnXk02QjQ0dFBS0uLH+8Ih8P+SPTiiy8utXkjAhFhzJgx/n04VOJ9x44dJbPLY/bs2YwZM8YXNu83UFNTwxtvvGFrQ/rBS822GcjwWQo86KaanQh8S0QuEJFm4HTgGRH5BYCITBORn7nHnQFcCrxH+lab/CEwBvilu/3OIryPquOBBx7w3VXB4HlDQ4N/0TOGz7Rp04DeJd5VtWxSZv/qr/6qTzC9traW2tpa1q0bMBemqqmGGUjBfRCqugrIXOvxhHvLfO524Fz3/h/IviQfVc3eG9TIG+l0mpUrV/orzL2/qVSKD3/4w6U0bcRRW1ubdSSvqiSTyZK7Cmtra5k9ezbbtm3zZ6DeyHnHjh3MmzcvpwVx1Uali0MuVPb8ySgYzz77rF800at31dXVRTqdZs6cOaU2b8TR34yuXLIHTzjhBD+YHoyFhUIhm4X0QzXMQExAjKw89thj/gjY63kej8dt4WCB8NxYQUSEvXv3lsCavogIxxxzTJ+LnmdjqcqvlCsWAzGqlpUrV9LT0+MvaPNEJJlM8pd/+ZelNm9EUl9fn3VkWupFhUGOPPJIQqFQVnfb2rVrS2BReWMzEKMquf3223vVu/Ju73znOyv+B1/O9CcibW1tJbbMQcRpGiYivZIqVJV9+/ZlbTRWzZiAGFXH+vXr6ejo6LNoMJVK8dGPfrTU5o1opkyZ0mebiLBv374SWJOdyZMn9+t22bRpU5GtKW9MQIyq4/bbbwfoJRzJZJKjjz6aaDRaYutGNmPGjOlzcQmFQvT09JTatF4cffTRWbdbeZND5CoelS4gtpTY8Nm6dSt79+4lHA73alkL8LnPfa7E1o18RITa2lri8bj/2BORRCJRNk27vAZimS6rurq6vJxfVf2+KOFwmGg0WpEX2kq0ebCYgBg+3//+97O6J2bPnk1DQ0MJLKo+Ghsbe7msPAFpa2tjwoQJJbSsNyeccAIrV670A/zhcHhY6d2JRIKDBw/64hkkGo1m7SNf7lR6hlUumIAYgOO/3rdvn3/B8gKlIsJVV111+BMYeWH8+PG0tbX5Mz9vFnLw4MGyEpD6+noWL17sr5afMGECsVhsUOfo6uqitbWVnp6eAdNbvRTywZ6/1FSa4A0FExADcGYfHkHf7PTp07FKxsUj2ObWQ0RKXlgxG7FYjOnTpw/qmM7OTrZv305XV5dfmNHrieIRHLx4lEsqc66MhPhGLpiAGGzcuJH9+/dnLUdx9dVXF9+gKidzrUWlX4i6u7tZt24du3fvJhQK+fW0otEoNTU1OQWVyyX+Mxgq/XvLBRMQg+985zt+2m7QdXDEEUeUldukWojFYlkzr8qhLlaupNNpVq9ezauvvkoikSAWi1FbW0ssFiMWi/kzDG8WMlBV3zFjxlTM+w5iAmKMeFasWEFbW1ufgJ+q8k//9E8lsqq6qauryyogiUSi7C+kra2tPPHEE2zcuJGamhpfNJLJpC8akUikV4VnOHSx9eIfsViM+vp6f4ZSiVgQ3Rjx3HLLLf4/svdPDU7m1dixY0tsXXXSX7A4Ho/nLVU236xatYo77riD/fv3U1tbS11dHfX19TQ0NPiikUgk+pRm8WYgXqbV6NGjR8SFN58xEBGpBZ4DYjjX7EdV9XoRGQf8FzAL+DPwIVXd7x5zLfApIAV8TlV/kRdjMjABqWKWL19Od3e370IIuhG++MUvltCy6iYajfoXUW/ULiJlF0iOx+Pce++9/PjHPyaZTBKLxRg1ahSjRo3yiyt6bXA92z23VSQSYdSoUUybNo2mpqYRIRqZ5HHm1AO8R1U7xOnS+gcR+TlwIfBrVb1RRK7BaRf+JRFZCFwCHAtMA34lIvNVNe8VL01AqpREIsF9992X9cJ08skn09jYWCLLDHGbN5VrIP3gwYNcc801PP6402Xa65PuZYp5gXKvmoEnGjU1NYwZM4b58+dzxBFHlL07brjk6ztzW3Z3uA9r3JsC5wNL3O33A7/D6dR6PvCQqvYAm0VkA3AK8HxeDAowsr9Bo1++853vkEqlso78LPZRWlS1LDOxNm/ezCc+8QleeuklX+SCs4tQKEQymfSrGIgI0WiUuro6Fi5cyGmnnUZ9fX2J30XxyOd3JiJh4BVgLnCbqr4oIpNVtQVAVVtEZJL79OnAC4HDm91teccEpArZuXMnzz//vH+RCgY0L7rooopbsDUSybz4eKP4UvDKK69wySWX+MUSvbgFOJlhnnB4vyFPOKZNm8ZFF13EscceWxYCWGwG8Z4niMiKwOO7VfXu4BNc99OJItIEPCEixw300lm2FaR5vQlIFfKFL3wBwE/b9Ua6kUiESy+9tJSmGTg9QLy4R3BBXTHbxqoqy5cv54orrmD37t1ZF/WJSK/ZhogQi8U444wzWLp0KePHjy+aveXGIAV/j6pmtv3Oiqq2isjvgHOAnSIy1Z19TAV2uU9rBmYGDpsBbM/VmMFgAlJlPPXUU+zfv99/HIx/XHvttaUwycjAcy0GxcPLZCo0qsptt93GF7/4Rbq6uvzXz1wZHiQUCjF69GiuvPJKPv3pT1t/dJd8zRhFZCKQcMWjDngv8B3gSeBjwI3u3+XuIU8C/ykit+AE0ecBL2Wcs949Z8J9vAA4F9iiqo/natthf5EiElHV8qujYAyazs5O7r///qz7pk6dyimnnFJki4xsZM4MAd8tVCiSySRf+9rX+M53vtNrUDGQcABMmjSJm266iQsvvLAq3VQDkcfPYypwvxsHCQEPq+rTIvI88LCIfAp4G7gYQFVXi8jDwBogCVyZJQPrWZw03/UiMhcnwP4g8H4RWayqOY0mcxnSvAScnMvJjPLmuuuuQ1V7jRC9C8TNN99cQsuMIN53lLk6uxAxkFQqxQ033MCNN95IIpHIuiI8m4jMmzePBx54gJNPtktDNvK5DkRVXwNOyrJ9L3BWP8csA5YNcNqxqrrevf8x4CequlREojjB+rwJiA0rRgA/+9nP2LlzZ1b3woUXXkhTU1PxjTKyUowsrM7OTr73ve9x8803093d3es1gwtKM1m8eDE/+clPmD17dl7tGYmU+Yws+AW/B/gugKrGRSTnBUe5CMhEEek3r1NVb8n1xYzSsG/fPh555JFegT0vQNvQ0GCB8zIj24UnXxej7du38/GPf5w//vGPvlgc7twiwgc/+EHuvfde6wszCMp8ceRrInIzsA0nNfi/Adwsr5zJRUDCwGhsJlKRqCrf/OY3gUPpl6FQyPezf/vb3y73kVJV4WVgBclHCu+WLVu49NJLWbVqVS+XlPdbCAbLPUKhEJ/97Ge58cYby7aESjlT5v9XlwFX4ZRBOVtVO93tC4Gc/dm5CEiLqn5z0OYZZcFDDz3EwYMHs16AzjvvPKZMmVICq4z+8FZzZ/rQh1rOfMOGDXziE59g3bp1pNNpIpFIr3pU2VxV9fX1LFu2zBqJDYNy7weiql042VsAuCVSjgM2qOr/5nqeXIY1WT8FEZkpIl/I9YWM4tPc3MxvfvMboHcNonA4zKRJk7joootKbKGRSTKZzHrhGayAbNq0iXPPPZdzzz2Xbdu2EYvF/O/em4VmXuRmzZrF8uXL6ejoMPHIA5l9Tvq7lci2O0XkWPd+I/An4N+BV0XkI7meJ5cZiB/lF5EJOKliH8FZnJJzvrBRXFKpFMuWLfODo3BoSi0ivlvLKC/6S5vN1YW1bds2vvSlL7FhwwZSqRSjRo0ikUjQ3d3tnz+z9tm73/1uvve977Fw4cLhvwHDp5xnIMD/UdVPu/c/Abylqh8QkSnAz4Gf5HKSXAQkISIfBf4WmA88AcxR1RlDMNooEj/84Q+Jx+NZ24P+7d/+bVXVJKoksn1f3vaBaGlp4YYbbmDz5s2k02nq6+v97x+cmU0ikegV65g+fToPPPAAixbltAjaGCRlLiDxwP2/Ah4BUNUdg7E7FwHZhbMW5DrgD6qqInJBri/gRvXvwfGvKfBJnNnL14FjgFNUdUWW42biTKmmAGmc+jC3uvsuPtzx1czrr7/On/70p14XC8/XPW3aNJYsWVJC64z+CJYIyTWFt6WlhVtvvZXm5uZeMw7vHOl0uldgPp1OM2fOHO6//36bcRQQr9hkGdMqIu/HycI6A2dRISISAXLOmMhFQL6MU1v+Dpzl8f81SENvBZ5V1YvcRSr1QCtOLfu7BjguCfyzqq4UkTHAKyLyS1VdA7yRw/FVSTKZ5Oabb/Z/vJlZNV/96ldLZZpxGLwLfeYMJFsJk927d3P33Xezc+dOkskk9fX1JBIJ39WVTqd7xVNSqRRHHXUUP/rRj5g1a1ZR3k+1U+YzkCuAf8EZoF+tqjvc7WcBz+R6ksMKiKp+H/i+iMzBiX38FJgmIl8CnlDVt/o7VkQagDOBj7vniuNMnVrd/QO9bgvglSpuF5G1OCWJ16jq2sMdX614ZdrBKb4XHM1eddVVQ87mMQqP971l/q6DAtLW1sZPfvITWlpaSKVSvqsqHo+jqn4dLe97T6VSzJw5kx/84AcmHEWmnK9P7nX7nCzbfwHk3L0w5+RyVd2kqstU9R3AYqARJ9gyEHOA3cB9IvKqiNwjIqNyfU0PEZmFs5T/xcEeW0289tprvPnmmwC+68Jr6nPsscdy3HEDVYA2Ss1AAfSOjg5++tOf8uijj6KqNDU1UVdXRzQapaamxs+uCsY8pk+fzmOPPcZPf/pTE48SUOZZWA8H7n8nY99/53qeIZX3VNXXgddF5HCNIyI4dbSWug1QbsVpu5izH0VERgOP4UyzDgzGThG5HLgc4IgjjhjMoRVHIpHg1ltv9R97o89UKkUkErEmURVE8KLS09PDmjVraG9v9xMfOjs7iUQi/nfsuaq8x5MnT+b73/8+06cXpIeQkQPlvg4Ep0Kvx1/hdDL0mJjrSYZbH/pi4J8H2N8MNKuqN3N4FEdAcsJd3PIY8OBgSgx7uE1Z7gZYtGhRQRqqlAs33XRTrxFsMPbxla98pdx/zFWPtxrc+95SqRQ7d+6kp6eHWCyGiNDT0+PXq0okEr1clOl0mokTJ3L99dczbdq0Er8bA8rbhcXADaZyvlYOV0AG/ITclLCtIrJAVdfhBGjW5HRi59O/F1hr9bYG5uWXX2bjxo1A39IUixYtYt68eQMdbpQBwZXhHR0dJJNJf/FfMKsqlUr5QgKOq2r8+PF84QtfYNy4caV8C0YGZV4Lq15ETsIJY9S598W95S8LS0T6+1V6L3Y4lgIPuhlYm4BPuGnA/4ozVXpGRFap6vtEZBpwj6qei5NadimOq2yVe64vq+rP+js+B1tGHPF4nNtuu80PnIZCIX+UGo1GWbp0aalNNHIglUoRj8dJp9N+TMNzT4EjMEEhSSQS1NbWsnTpUiZMmFBi641slPkMZAdwS5b73uOcyGUG8grOlCbbpxHPsq0XqroKyFyp9IR7y3zudpyuWKjqH/p5TVQ16/HVyA033OCPXj0RAefHe+2115b7j7jq8cSgp6cHoE9w1ZtNBoVDVfnABz5gM44yxhvMlSuquiQf58kljTenwv8icqyqrh6+SUau/Pa3v+Xtt98GDpWo8C48p556qmXelDmpVIqurq4+2Vfe4+CAwJuJ/MVf/IWVVK8QynnwJiJnDrRfVZ/L5Tz5bLL8H1jnwqLR3t7Offfdl3W1eTQa5YorriilecZh6Onp6VM4MTMJInibPXs2tbW1pTK3YvE+v1JkRZWzgADZCuEqcAJOpZCcltHnU0DK+tMaaVxzzTW+YGSWvrj++uvL/cdb1XR3d/dp5ORd5Lzv0ZtRNjU1mXAMkY6ODtra2gDnf2T8+PHEYodbeZAfKsCF9TfBxyLyLuArOIu3P5vrefIpICM6TbaceOyxx9i3b5+/Qjk4cj377LOZOXNmKc0zBsBb3BmcaQTjHR51dXVFu9iNNFKpFLt37/ZX9oPzOe/du5cpU6YU7cJeCYM4ETkLZ12eAt9S1V8O5vh8CohRBA4cOMAjjzwC4HcVBOcfZPTo0fzd3/1dKc0zDkNmx8HgrENEqKmpIRqNVsTFpxzp6uqitbW1T8l6OJSwUMxZSLkiIn+NM+NoA76iqn8cynkOK8UikusS7sNmZBnD57rrrvPve2VKvNuyZctKaJmRCwNdVOrr6/1Fg8bgSKfTtLa20tHRMeDzilkhN1+lTMRp3vdbEVkrIqtF5Cp3+9dFZJuIrHJv5waOuVZENojIOhHJtsThKZxYRxL4kog8Gbzl+h5zmYH8lByC46p6Wq4vagyNn//857S2tvqPvYVl4PT4sLTO8sdrKRsM7kYiEaLRaKlNq1i6u7v9bDboX6Tr6+uzVjYuFHkcCGStTO7u+76q9uphLiILcSqoHwtMA34lIvNVNRV42rvzYVgun6YNh8qAzs5Onn76ab/PQNC/O3bsWM4777wSWmfkiogQi8X87y+48DOzDI3NRAYmlUrR3t7ea5sXvM7svDhmzJiipj/nM+trgMrk/XE+8JCq9gCbRWQDcArwfOA50f7iHW5xxf/JxbZcBGS6iPxLfztV9XO5vJAxPO644w6/p3lmj49vfetbJbTMGCzerMMj+H16+zO3GYdQVdra2nrFAD28C7fX9z0UCjFu3LiSNHcaxGtOEJFgU7y73Tp+fZDelcnPAD4rTsfYFTizlP044vJC4LBm+grObSLyeVX1e3+ISAj4EU6PkJzIRUC6cFajGyVi9erV7N69m3A47AdYvUyeD33oQ4wdO7bUJhpGUejs7OTAgQNEIpFeM7fgaN+7cNfW1pa0dfMgZiB7VPWwfYUlozK5iNwB3ICTQXUD8D2cjq/ZXjhzRHI28KyIxFT1cRGpw2lrewD4mz5H90MuArJXVe/P9YRGfkkkEvz0pz/1M3QAampq/J4Q73tfVZYAG1F4I+ngWpD+eoNUK8lkkubmZn8QlY2gkIwZM6akLWXzvXBRslQmV9Wdgf3/BjztPmwGgrn8M4DtwfOp6p9F5L3AL0RkEk7dwRdVdVB9H3IREMuuKiFPPPEE6XS6T/BPRPj85z9fIquMfBIUDO9+NvdMNaKqbNy4kZ6eHmpra/t1/XkX61gsRl1dzsVkC0q+vj+R7JXJRWSqGx8BuACn1TfAkzjtx2/BCaLPA17KOKeXGPVF4N+BXwIPeNtVdWUutuUiIB8aKJVXVd/O5YWMwbN582bfdeWNpry/ixcvtqyrEUJmHbNgWZpqZtu2baxevZqxY8cyZswYoPdnFVwDFQ6HaWhoKCvRzeMMJGtlcuAjInIijnvqzzh9zlHV1eJ0HFyDk8F1ZUYGFjjuLo/XgMmBbQq8JxfDchGQZ+hbjVdxSqlPIseaKcbgSCaTvPDCC4RCIWpra/1/EnBWKVvW1cghWL7EI9tCuGrh4MGDLF++nNraWsaNG9dLKLxWzXCoUnFjY2NZlnvJYxZWf5XJfzbAMcuAfheGqWpx0njdHug+bhbAl4D3Apb+UyCee84phhmNRnu5N0KhEJdeeqn5x0cQ2dxV1TgDSafTPPXUU6xfv57x48dTX1/vi4bXC8V7XiKRYNSoUUyYMKGsZh0e5V4LS0T+HhBV/Y+M7ZcBB1X1P3M5T86rakRkHs7S91NxpjqfU9VE7iYbubJ161ba29sJhUJ+1lVNTQ0iwsKFCxk/fnypTTTySLbZRrXNQF5++WWWL19OXV2dnzmVSqX8XineACocDhOJRJg9e3bZL74sZwHBaUWeraT7fwG/BfIjICJyHI5wHAvcBHwqiz/NyBPxeJxNmzb1Wivg/Y1Go5x++umlNM8oANliINUiIM3Nzdxxxx309PRQX1/vC0UymSQej9PZ2enXsAqFQhx99NFMnjy51GYflnxnYRWAsKq2Z25004Nrcj1JLjOQPwFbcWIhpwCnBD8YW0iYP1SVN95wEikyR1ciwtlnn13uP0pjCGS6q9Lp9Ih3YbW2tnLnnXfS0tLSK0Xdc091dnYCThp7R0cHs2bN4p3vfGe5j+p7Ueb/qzUiMkpVDwY3uqVScp7a5SIgn8JKtReFLVu2+P5wz2UViUQQEebPn8/o0aNLbaJRAIJta2FkZ2F1dHRw3333sWHDhl7b0+k0yWSScDiMiNDd3U08HqepqYlLLrnEz8KqJMpcQO4FHhWRz6jqn8GPb9/m7suJXILoPx6afcZgaGtr48CBA754wCHXVX19PUcddVQpzTMKSCqVIhwO9xKNYK2zkUB3dzc/+tGPWLNmTdYFful0mnjcWXKWTCapqanhwx/+MAsWLCi2qXnBK6dSrqjqzSLSAfyPu8IdoAO4UVXvyPU8ucRAnmKAGYiqWj7pMInH42zbts3P3PBmH17Q8KSTTiq1iUYB8eId3iwkWGW50kkkEtx333289NJL1NTUZK2G6wlnMpkklUrx7ne/m7/5m78p9xH8YSl3+1X1TuBOV0AkW0zkcOTiwrr58E8xhko6nWbz5s3AodS/4Ohl1qxZRS1BbRQfL+YRvOBUehC9q6uL22+/nVWrVhGJRA77G1ZV5s2bxz/8wz+U5ZqOoVDOAiIifUqWZMS2b8ncn41cXFj/4568FpiLMxvZqKrduRpr9M+f//xn/+KRGSAcM2YMTU1NpTHMKBoi0qdTYaUKSEdHBz/4wQ949dVXiUajvjvWI1udr/Hjx/PpT3+aSZMmFdvcglLOAgLkJaiUiwsrgrNg8JPAFpwuhjNE5D6cVoi2FmSINDc3+35f78fmiUg4HOaII3JtBmlUOpn1sCqNffv28e1vf5u1a9cSiUR6+f+9tORkMuk/FhEaGhq47LLLmD17dqnMLhjlvpBQVb+Rj/Pk4hv5Lo5azfZ8ZCLSgOPauhm4Kh+GVBu7du2ivb29l987mIkzd+7cch/BGHkkUzwqpaDitm3b+OY3v8nWrVv7XDS9WVRwXUsikaC+vp7LL7+c4447riQ2F4ty/v8dqMcT5L48IxcBeT8wXwPDInexyWeANzEBGTT79u1j586dvUZpQRGZOXNmWWdwGIUhOPMo91TedevWcd1117F7927q6ur6XCw90YjH4377gZqaGi677DIWL15cIquLS5mLf7DH0zeA64dyklwERDXLL1lVUyJSvr/wMqW9vZ1t27b12hb8eCdOnFjSJjhGaQiuRPcel6OA/PGPf+T666/nwIEDRKNRYrFYr/2ZsZt0Ok0sFmPp0qUsWnTYnkkjhgpwYfk9nkTk6qH2fMpFQNaIyEdV9d+DG91iXG8O5UWrlYMHD/L224eq33v5/+CISGNjo5Vor0KCHSY9ym0G8vjjj3P99dcTCoV6iUa2oLgnfk1NTVx99dVVJRxBytmFlcGQf2i5CMiVwOMi8kmcaY8Ci4E6nCYmRg50dHSwdevWPtu9fP+6ujqmT89sW2xUC5liUQ4CkkqluOuuu7jppptIJpOMGjWKUaNGAYdcrl5w3GsxCzBp0iS+/OUvM3/+/FKaX3IqSECGTC5pvNuAU0XkPTgFFQX4uar+utDGjRTa29tpbm4Gei8W86ipqWHu3LmlMs8oMdncVaVsaZtMJrnrrrv44Q9/yIEDBwB6zZSDC/+CCx9nzpzJN77xjRGZVTUUyllAROQg4K1WrReRA94unLBFQy7nySWNtxb4NM4akNeBe1U1OQhDm4B7gONwZi+fxOnR+3XgGOAUVV2R5biZOK0WpwBp4G5VvdXdNw6n7PAsnE5cH1LV/bnaVEz27dvHjh07gEPiEQqFfF9xJBKp2HINRn7wZqGZbW2L7UPv6uritttu48knn2T//v10dx9a6uU1ckokEn69Kq9K7vz581m2bBlTp04tqr3lTjkLCPCWqg67xEUuLqz7gQTwe+D/4lz0rx7Ea9wKPKuqF4lIFKgHWoELgbsGOC4J/LOqrnQrRL4iIr9U1TXANcCvVfVGEbnGffylQdhUFHbu3MnevXuB3j8mb6V5KBRi3rx55f5DMwqMV8Ij2HmvmKVMDhw4wJ133skf/vAH2tvb6enp6RMMV1V/zVIqlaKmpoYzzjiDZcuWWdwuC+VeC4s8FcjNRUAWel0JReReMpqzD4S7XuRM4OMAqhoH4jgCMuCF020W3+LebxeRtcB0nD6/5wNL3KfeD/yOMhOQLVu20NHR0avCavD9hkIh5s6dW9aZGkZxSKVSfiVaOCQghR5Y7Nmzh3vuuYf169fT3t5OInFoTXAoFCIcDhMOh30xS6VSdHd3c/7553PDDTdYtuBhKPOB4aRs5Uw88lbKBGf24Z00OcgPZQ6wG7hPRE7ACcJflVmD/nC4ZYZPAl50N012BQZVbRGRrDUQRORy4HKgaKu60+k069at86f6QTzfcSQSMfEwfNLpdK84iPe3UL8Pr4nTnj17/Ayw4ELWmpoaampqfOFIJpOEQiH+8R//kc9//vPlPrIuG8pcQMLAaLL3Ws+ZXATkhIwAS537OJdgSwQ4GViqqi+KyK047qav5mqgWynyMeBqVT1wuOcHUdW7gbsBFi1aVPCUlkQiwdq1a/usKg7+kLyAeZn/uIwiUqw1H+vXr+euu+5i//79hEIhv3An4D+ORCKoKvX19UQiEX/x36WXXmrCMQjKfR0I0KKq3xzuSXLJwhrOr6YZaFZVb+bwKI6A5ITbWvEx4EFVfTywa6eITHVnH1OBXcOwMS+0t7f7hREheymKuro65syZUyoTjTIlM96RbzF57bXXuOuuu+js7OxVLscb5EQiEWpra/3AfSQSYdy4cSxdupQlS5bk1ZZqIl+DxP4SigZKJhKRa3GaAaaAz6nqLzJPmw/bClonXFV3iMhWEVmgquuAs3BiGIdFnE//XmBtFn/ck8DHgBvdv8vzaPagaWlp6RUszxQRgKamJiuOaGQlWDMqn6xYsYJ7772Xrq4uoE+5bn+AEwqFiEajhMNhpk6dyuWXX86xxx6bV1uqkTx6GbImFOHElvskE4nIQuASnGUX04Bfich8VQ2OVM7Kh2HFaDSxFHjQzcDaBHxCRC4A/hWYCDwjIqtU9X0iMg24R1XPBc4ALgVeF5FV7rm+rKo/wxGOh0XkU8DbwMVFeB99SCaTvP32273SHTNRVaZNm8bEiROLaJlRragqL7zwAg899BAHDhzoV5SCgxsRYcqUKVx22WU2yMkj+RKQARKK+ksmOh94SFV7gM0isgE4BXg+cM59+bCt4AKiqquAzFoGT7i3zOduB8517/+BfqZZqrqXPCnoUOns7KSlpaWP+yHzR3PUUUf5q3cNI1cG6z9Pp9O89NJLPPnkk7S3t/uzjiBBMfFmytOmTeMzn/kMkydPHrbNxiGCrsIcmCAiwbVwd7vx22znncWhhKL+kommAy8EDmt2t+Uda3U3SFSVHTt20NnZ2StInpmuGw6HmT9/vnUTNA5LtgtNrhcfVeXVV1/l6aefpquri1QqNaArzNu3YMECrrjiCmtYVkAGISB7VPWwBcMyE4oGOH+2HQXJ0rCr2yDo6enxS5IE8UaLXkG80aNHM3PmzHLPwjDKiMyLQS4tYNesWcOvfvUr2tra/EV+mefKLJtz0kkncdlll9kajiKQz0zLfhKK+ksmagZmBg6fAWzPmzEBTEByQFXZvXu3XxcomMXilSXxFl1NmjTJRnVGzniZT5krv/sTEFVl48aNvPTSS+zbt4+enp5e+711HOl0mp6eHn+F+6mnnspHP/pR6urqCvZejN7kMQurv4Si/pKJngT+U0RuwQmiz2MQC8AHgwnIYeju7mbLli1+znzmjyJYsuCII47o0wPaMAbCK0gYXJMB2QVk27ZtrFy5kq6uLrq6unoFwT0R8gTEK7v+rne9i/PPP9/WcJSAPM5AsiYU0U8ykaquFpGHcTJek8CVGRlYecMEpB9Ule3bt9Pa2tqnv3PmD6O2tpapU6eay8oYNPF4vM9vSt3ufR579uxh/fr17Nu3zy834omGd/N+o14JlCVLlnD22WebcJSIQQbRB2SghCL6SSZS1WXAsrwYMAAmIFk4ePAgLS0tvfzKwYB58P6UKVMsy8oYMt5vLDPwHY1G2b9/P83NzXR2dtLd3d1rxuGtEve2eUKxePFilixZYsJRBlRDtQkTkABehtXBgwf7lJfI/AePxWLMmDHDZh3GsAgOUjxEhD179vgxDA/PzRUKhaitrQUc4airq+P444/nlFNOqYqLVqVQDd+FCUiAAwcO+BV0vZtXGTUYA5kyZQqNjY2lNtcYAWSrgOv13gjOdCORCJFIxO8ACDBq1CiOP/54jj/+eBvIlCEmIFVGe3t7r6qkXmDSW7VbW1vLrFmzzD1g5I1oNEpPTw+xWKzPrNf7DYbDYaLRKIAvItOmTePoo4+232KZUgHFFPOCCUiAYD8GL7vKm3lMnTqV0aNHl9hCYyThxTXq6ur6pPF6s45gafdIJMKRRx7JzJkzq2J0W+lUw3dkAhJg/PjxdHR0+C1FvUWBU6dOrYofg1Ec4vE4+/YdKkWULTXcG73W1NQQiURoampi0qRJ9js0ygoTkADRaJRZs2Zx4MAB0uk0jY2NvuvAMIZLIpGgra3Nj2F4ZJZYDy5ObWxsZPz48VXhDhlpVIPYm4BkUFNTw/jx40tthjGCSCaTtLW1kUql+riqPEKhkO+u8gYvTU1NJhwVjAmIYRhDJpVKsX///j6NxbLhxTxisRhNTU1VcfEZ6VTDd2gCYhh5RlXp6OjI2sipP6LRKI2NjZZVNUKwLCzDMIaEV6sqE89NFUzVrampYezYsVVxsak2bAZiGMagyexQGax15QlFOBymoaHB+sWMYExADMMYNNkuHF7wPBKJmKuqSjABMQxj0IwePZr9+/f32hYKhWhsbLRy/8aIwgTEMPKMF9fw4iC1tbW2nqjKyGc593LGBMQwCkBNTY3NNqqcakiMMAExDMMoADYDMQzDKBO6u7tpa2tDRGhsbCQWi5XapAExATEMwygxXnvpzs5Ofw1NW1sbM2fO9BtrlRvVEgMZ+U46wzAqlp6eHjZt2kRnZydwaFSvquzdu7eUphnYDMQwjDJl//797Nu3r9dCTO++1+StnKmGIPrIf4eGYVQU6XSat99+2++Zklnu3vtbLW2lReRHIrJLRN4IbPu6iGwTkVXu7dzAvmtFZIOIrBOR9xXSNpuBGIZRNnR2dtLS0pJ1nzfzAGhoaKChoaGYpg2aPMZAfgz8EPj3jO3fV9WbM15zIXAJcCwwDfiViMxX1VS+jAliAmIYRslRVXbt2kVHR8eAzwEqpr10vgREVZ8TkVk5Pv184CFV7QE2i8gG4BTg+bwYk4G5sAzDKCmJRIItW7Zw8ODBAS+6kUiEOXPmVIx45HoDJojIisDt8hxf5rMi8prr4hrrbpsObA08p9ndVhAKLiAi0iQij4rImyKyVkROF5GLRWS1iKRFZNEAx/bx/bnbTxCR50XkdRF5SkTKey5rGEZWWltbaW5u9oPj/aW/jh07llmzZo3UwPQeVV0UuN2dwzF3AEcBJwItwPfc7dkUWLNsywvF+DZuBZ5V1aOBE4C1wBvAhcBzhzn2x8A5WbbfA1yjqu8AngC+kDdrDcMoOOl0mubm5j5FJ6Gv62fGjBmMGzeuWKbljVAolNNtKKjqTlVNqWoa+DccNxU4M46ZgafOALYP640MQEEFxJ0ZnAncC6CqcVVtVdW1qrrucMer6nPAviy7FnBIfH4JfDBPJhuGUWASiQTNzc2kUqkBF9zFYjFmz55d9ivOS4GITA08vABnUA7wJHCJiMREZDYwD3ipUHYUOog+B9gN3CciJwCvAFep6sFhnvcN4DxgOXAxvRXXx/UlXg5wxBFHDPMlDcMYLh0dHRw4cIBwOOyv5ci2nmPy5MkVEesYiHwF0UXkJ8ASnFhJM3A9sERETsRxT/0ZuAJAVVeLyMPAGiAJXFmoDCwovIBEgJOBpar6oojcClwDfHWY5/0k8C8i8jUcxY1ne5LrS7wbYNGiRQXzAxqGMTDpdJq2tjZSqRTRaNQXjmQy6e9XVcLhMNOnTx8RDbfymIX1kSyb7x3g+cuAZXl58cNQaAFpBppV9UX38aM4AjIsVPVN4GwAEZkP/PVwz2kYRmFQVdrb21HVPj7/4ArzpqYmxo4dm+0UFYfVwsoDqroD2CoiC9xNZ+FMrYaFiExy/4aA64A7h3tOwzAKQzweJ51O97qohkKhXo+nTZs2YsSjmihGFtZS4EEReQ0n5exbInKB68s7HXhGRH4BICLTRORn3oGu7+95YIGINIvIp9xdHxGRt4A3cTIM7ivC+zAMYwikUr1d8MGReSgUYsaMGSMyUF7ILKxyoeAr0VV1FZC51uMJ95b53O3AuYHH2Xx/qOqtOOnBhmGUOZFIhJ6eHv+xt6I8Go2O6HpW1eDCslImhmEUlJqaGqLRKPG4k+siIowePdpa/o4ATEAMwygoIsKoUaOoq6vzA+nVMDqvhvdoAmIYRlGodH//YKiWLCwTEMMwjAJgAmIYhmEMCRMQwzAMY0hUg4BUj1PSMAzDyCs2AzEMwygA1TADMQExDMPIM5aFZRiGYQwZExDDMAxjSFSDgFgQ3TAMwxgSNgMxDMMoADYDMQzDMIx+sBmIYRhGnrEsLMMwDGPIVIOAmAvLMAyjjBGRH4nILhF5I7BtnIj8UkTWu3/HBvZdKyIbRGSdiLyvkLaZgBjGCGLXrl2sXLmS119/nfb29lKbU9V4bqzD3XLgx8A5GduuAX6tqvOAX7uPEZGFwCXAse4xt4tIOF/vKRNzYRnGCKCtrY3//d//9bv+AWzdupV3vetdNDQ0lNAyY7io6nMiMitj8/nAEvf+/cDvgC+52x9S1R5gs4hsAE4Bni+EbSYghlHBJJNJnn/+efbu3etv80a1iUSCDRs2cPLJJ5fKvKpmEDGQCSKyIvD4blW9+zDHTFbVFgBVbRGRSe726cALgec1u9sKggmIYVQgqsrmzZtZs2YN4FysVNXf5128kslkyWysdgYhIHtUdVG+XjbLNs3TuftgAmIYFUZbWxsvvPACiUTCv0hFIhGSyaQvIh5HHHFEKUw0Cs9OEZnqzj6mArvc7c3AzMDzZgDbC2WEBdENo0JIJpO8+OKL/P73vyeRSAD4giEihMO9Y6XHHXccU6ZMKbqdRu4B9GGk+j4JfMy9/zFgeWD7JSISE5HZwDzgpWG9mQGwGYhhVABvv/0269atI5VKEQqFUNVeLqsgTU1NnH766cRisVKYauQZEfkJTsB8gog0A9cDNwIPi8ingLeBiwFUdbWIPAysAZLAlaqaKpRtJiCGUcZ0d3fz+uuv09PTQzQaJZVKkUwmSaVSpFK9rwsiwplnnsm4ceNKZK1RCFT1I/3sOquf5y8DlhXOokOYgBhGGaKq7Nq1i46ODsaOHUt3dzednZ10d3f7+9PptD/7mDt3LvPnz6+K1c+VQjV8FyYghlGGtLa20tnZ6cc1Ro0ahaqSSCT8mYeq0tjYyGmnnUZNTU0pzTWyYAJiGEZJ6Ojo6HMBqqmp8eMfIsIZZ5zB2LFj+zmDYRQeExDDKEP6G72m02mmT59u7qoKoBq+HxMQwyhDGhsb/dXlXpwjlUqxePFiotFoKU0zDJ+CC4iINAH3AMfhrIj8JM7ilq8DxwCnqOqKfo79EfB+YJeqHhfYfiJwJ1CLk6r2j6pasFxnwyg2Y8aMIRwO09HRATiCYmm5lUU1zECKsZDwVuBZVT0aOAFYC7wBXAg8d5hjf0zfKpQANwHfUNUTga+5jw1jRFFfX8+kSZOYNGmSiYdRlhR0BiIiDcCZwMcBVDUOxIFWd/+Ax/dThRKcmYxXYrSRAi7VNwzDGCzWkTA/zAF2A/eJyAnAK8BVqnpwmOe9GviFiNyMM4t6Z7YnicjlwOVgNYEMwygu1SAghXZhRYCTgTtU9STgIG7jk2HyGeDzqjoT+Dxwb7YnqerdqrpIVRdNnDgxDy9rGIZheBRaQJqBZlV90X38KI6gDJePAY+79x/BaZhiGIZRNhS4mGJZUFABUdUdwFYRWeBuOgunyNdw2Q78pXv/PcD6PJzTMAzDGATFyMJaCjwoIq8BJwLfEpEL3KqSpwPPiMgvAERkmoj8zDvQrUL5PLBARJrdypMAlwHfE5E/Ad/CjXMYhmGUC9UwA5HMUtAjFRHZDWwp0stNAPYU6bWGQ6XYCZVja6XYCZVjaynsPFJVhxw4FZFncezOhT2qmm25QtlTNQJSTERkRR5bVBaMSrETKsfWSrETKsfWSrGzGrGOhIZhGMaQMAExDMMwhoQJSGG4u9QG5Eil2AmVY2ul2AllZquIXCwiq0UkLSJBl1UfO0UkLCKvisjTgW0niMjzIvK6iDzlVsIY6PVOdJ+/WkReE5EP5/HtVAUWAzEMoywQkWOANHAX8P/6K7LqPvefgEVAg6q+3932snvc/4jIJ4HZqvrVAc4xH1BVXS8i03AqZRyjqq15e1MjHJuBGIZRFqjqWlVdd7jnicgM4K9xqnwHWcChAq2/BD7oPj8sIt8VkZfdmcYV7uu9parr3fvbgV2AlawYBCYghmFUGj8AvogzWwnyBnCee/9iYKZ7/1NAm6ouBhYDl4nI7OCBInIKEAU2FsjmEYkJiGEYRUNEfiUib2S5nZ/j8V5/oFey7P4kcKWIvAKMwan8DXA28FERWQW8CIwH5gXOORX4D+ATqpopSsYAWEdCwzCKhqq+d5inOAM4T0TOxWko1yAiD6jq36vqmzhi4cU3/to9RoClqvqLzJO5gfZngOtU9YVh2lZ12AzEMIyKQVWvVdUZqjoLuAT4jar+PYCITHL/hoDrcLqWAvwC+IyI1Lj754vIKBGJAk8A/66qjxT5rYwITEAMwygLcq2RNwAfEZG3gDdxCq7e526/B6eI60oReQMnyysCfAi34Z2IrHJvJ+b1TY1wLI3XMAzDGBI2AzEMwzCGhAmIYRiGMSRMQAzDMIwhYQJiGIZhDAkTEMMwDGNImIAYhmEYQ8IExDAMwxgS/x8kObyf/ZnIrQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(y='POINT_LAT', x='POINT_LON', c='THICKNESS', kind='scatter');" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }